Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2018, Vol. 13 Issue (1) : 96-106    https://doi.org/10.1007/s11465-018-0498-6
RESEARCH ARTICLE
Microcellular injection molding process for producing lightweight thermoplastic polyurethane with customizable properties
Thomas ELLINGHAM1,2, Hrishikesh KHARBAS1,2, Mihai MANITIU3, Guenter SCHOLZ3, Lih-Sheng TURNG1,2()
1. Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
2. Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
3. BASF Corporation, Wyandotte, MI 48192, USA
 Download: PDF(978 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A three-stage molding process involving microcellular injection molding with core retraction and an “out-of-mold” expansion was developed to manufacture thermoplastic polyurethane into lightweight foams of varying local densities, microstructures, and mechanical properties in the same microcellular injection molded part. Two stages of cavity expansion through sequential core retractions and a third expansion in a separate mold at an elevated temperature were carried out. The densities varied from 0.25 to 0.42 g/cm3 (77% to 62% weight reduction). The mechanical properties varied as well. Cyclic compressive strengths and hysteresis loss ratios, together with the microstructures, were characterized and reported.

Keywords thermoplastic polyurethane      microcellular injection molding      cavity expansion      compressive strength      hysteresis loss ratio     
Corresponding Author(s): Lih-Sheng TURNG   
Just Accepted Date: 12 December 2017   Online First Date: 09 January 2018    Issue Date: 23 January 2018
 Cite this article:   
Thomas ELLINGHAM,Hrishikesh KHARBAS,Mihai MANITIU, et al. Microcellular injection molding process for producing lightweight thermoplastic polyurethane with customizable properties[J]. Front. Mech. Eng., 2018, 13(1): 96-106.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-018-0498-6
https://academic.hep.com.cn/fme/EN/Y2018/V13/I1/96
Fig.1  Schematic of an injection-molded component part and the direction of core retraction
Fig.2  Schematic representation of the three-stage molding process and the corresponding part thicknesses at various stages (unit: mm). From left to right, the first three images correspond to the part dimensions of the original part, the part after Stage 1, and the part after Stage 2, respectively. Stage 3 is includes (a) Part 1: Straight profile; (b) Part 2: Varying profile
Processing parameter Unit Value
Drying temperature °C 80
Drying time h 4
Processing temperature °C 160/180/190/200/205
Mold temperature °C 21
Loading of SCF % 0.6
Cooling time s 165
Initiation of Stage 1 retraction s 0 s after hold
Initiation of Stage 2 retraction s 60 s after cooling
Injection pressure MPa 135
Injection speed cm3/s 75
Packing pressure MPa 80
Packing time s 4
Tab.1  Processing conditions for injection molding
Fig.3  SEM images of the edge (left) and center (right) of the part after (a) Stage 1, (b) Stage 2, and (c) Stage 3
Fig.4  Graphical representation of (a) bulk density, (b) cell size, (c) hysteresis loops, and (d) hysteresis loss ratio results at the end of different stages in the three-stage molding process of the flat profiled part (Part 1)
Fig.5  Location of SEM samples and uniaxial compression samples for the tapered profile part (Part 2) (unit: mm)
Fig.6  SEM images at 15× magnification at the center of cross sections at (a) Section 1, (b) Section 2, (c) Section 3, and (d) Section 4 of the tapered profile part (Part 2)
Fig.7  SEM images at 200× magnification of the center of cross sections at (a) Section 1, (b) Section 2, (c) Section 3, and (d) Section 4 of the tapered profile part (Part 2)
Fig.8  Graphical representation of (a) bulk density, (b) cell size, (c) cell aspect ratios, and (d) hysteresis loop results at different sections in the tapered profile part (Part 2)
Fig.9  Plot of (a) uniaxial compression hysteresis loops and (b) hysteresis loss ratios at different sections in Part 2 with a maximum load of 2000 N
1 Colton J S, Suh  N P. The nucleation of microcellular thermoplastic foam with additives: Part I: Theoretical considerations. Polymer Engineering and Science, 1987, 27(7): 485–492
https://doi.org/10.1002/pen.760270702
2 Ames K A. Elastomers for shoe applications. Rubber Chemistry and Technology, 2004, 77(3): 413–475
https://doi.org/10.5254/1.3547832
3 Colton J S, Suh  N P. Nucleation of microcellular foam: Theory and practice. Polymer Engineering and Science, 1987, 27(7): 500–503
https://doi.org/10.1002/pen.760270704
4 Lakes R S. Viscoelastic Materials. Cambridge: Cambridge University Press, 2009, 359–360
https://doi.org/10.1017/CBO9780511626722
5 Engels H W, Pirkl  H G, Albers  R, et al. Polyurethanes: Versatile materials and sustainable problem solvers for today’s challenges. Angewandte Chemie International Edition, 2013, 52(36): 9422–9441
https://doi.org/10.1002/anie.201302766
6 Okamoto K T. Microcellular Processing. Cincinnati: Hanser Publication, 2003
7 Anson M, Ko  J M, Lam  E S S. Advances in Building Technology. Amsterdam: Elsevier, 2002
8 Xu J. Microcellular Injection Molding. Hoboken: Wiley, 2011
9 Kharbas H A. Developments in microcellular injection molding technology. Dissertation for the Doctoral Degree. Madison: University of Wisconsin-Madison, 2003
10 Sun X, Turng  L S. Novel injection molding foaming approaches using gas-laden pellets with N2, CO2, and N2 + CO2 as the blowing agents. Polymer Engineering and Science, 2014, 54(4): 899–913
https://doi.org/10.1002/pen.23630
11 Shaayegan V, Mark  L H, Park  C B, et al. Identification of cell-nucleation mechanism in foam injection molding with gas-counter pressure via mold visualization. American Institute of Chemical Engineers, 2016, 62(11): 4035–4046
https://doi.org/10.1002/aic.15433
12 Rizvi S J, Alaei  M, Yadav A, et al. Quantitative analysis of cell distribution in injection molded microcellular foam. Journal of Cellular Plastics, 2014, 50(3): 199–219
https://doi.org/10.1177/0021955X14524081
13 Moon Y, Cha  S W, Seo  J. Bubble nucleation and growth in microcellular injection molding processes. Polymer-Plastics Technology and Engineering, 2008, 47(4): 420–426
https://doi.org/10.1080/03602550801898321
14 Nellis G, Klein  S. Heat Transfer. Cambridge: Cambridge University Press, 2009, 137
15 Sun X, Turng  L. Foam injection molding using nitrogen and carbon dioxide as co-blowing agents. Society of Plastics Engineers: Plastics Research Online, 2013, 2–4
https://doi.org/10.2417/spepro.005005
16 Sun X, Kharbas  H, Peng J, et al. A novel method of producing lightweight microcellular injection molded parts with improved ductility and toughness. Polymer, 2015, 56: 102–110
https://doi.org/10.1016/j.polymer.2014.09.066
17 Sun X, Kharbas  H, Turng L S. Fabrication of highly expanded thermoplastic polyurethane foams using microcellular injection molding and gas-laden pellets. Polymer Engineering and Science, 2015, 55(11): 2643–2652
https://doi.org/10.1002/pen.24157
18 Kharbas H A. Manufacturing highly expanded thermoplastic polyurethane foams using novel injection molding foaming technologies. Dissertation for the Doctoral Degree. Madison: University of Wisconsin-Madison, 2016 
19 Qi H J J,  Boyce M C C. Stress-strain behavior of thermoplastic polyurethanes. Mechanics of Materials, 2005, 37(8): 817–839
https://doi.org/10.1016/j.mechmat.2004.08.001
20 Gong L, Kyriakides  S, Triantafyllidis N. On the stability of Kelvin cell foams under compressive loads. Journal of the Mechanics and Physics of Solids, 2005, 53(4): 771–794
https://doi.org/10.1016/j.jmps.2004.10.007
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed