Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2019, Vol. 14 Issue (1) : 33-46    https://doi.org/10.1007/s11465-018-0514-x
RESEARCH ARTICLE
Uncertainty propagation analysis by an extended sparse grid technique
X. Y. JIA1, C. JIANG1(), C. M. FU1, B. Y. NI1, C. S. WANG2, M. H. PING1
1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
2. Key Laboratory of Electronic Equipment Structure Design of Ministry of Education, School of Electro-Mechanical Engineering, Xidian University, Xi’an 710071, China
 Download: PDF(461 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, an uncertainty propagation analysis method is developed based on an extended sparse grid technique and maximum entropy principle, aiming at improving the solving accuracy of the high-order moments and hence the fitting accuracy of the probability density function (PDF) of the system response. The proposed method incorporates the extended Gauss integration into the uncertainty propagation analysis. Moreover, assisted by the Rosenblatt transformation, the various types of extended integration points are transformed into the extended Gauss-Hermite integration points, which makes the method suitable for any type of continuous distribution. Subsequently, within the sparse grid numerical integration framework, the statistical moments of the system response are obtained based on the transformed points. Furthermore, based on the maximum entropy principle, the obtained first four-order statistical moments are used to fit the PDF of the system response. Finally, three numerical examples are investigated to demonstrate the effectiveness of the proposed method, which includes two mathematical problems with explicit expressions and an engineering application with a black-box model.

Keywords uncertainty propagation analysis      extended sparse grid      maximum entropy principle      extended Gauss integration      Rosenblatt transformation      high-order moments analysis     
Corresponding Author(s): C. JIANG   
Just Accepted Date: 18 May 2018   Online First Date: 10 July 2018    Issue Date: 30 November 2018
 Cite this article:   
X. Y. JIA,C. JIANG,C. M. FU, et al. Uncertainty propagation analysis by an extended sparse grid technique[J]. Front. Mech. Eng., 2019, 14(1): 33-46.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-018-0514-x
https://academic.hep.com.cn/fme/EN/Y2019/V14/I1/33
Level Integration node Integration weight Algebraic precision
1 V11= 0 A11= 1 1
2 V12= {1.7321,0,1.7321} A12= {0.1667 ,0.6667, 0.1667} 5
3 V13= { 2.8613 ,0.7411 ,4.1850 ,1.7321,0,?1.7321, 4.1850,0.7411,2.8613} A13= { 0.0080, 0.2701,0.0001, 0.0949,0.2540,?0.0949, 0.0001,0.2701,0.0080} 15
4 V13= { 3.2053 ,2.5961 ,5.1870 ,1.2304 ,6.3634, 2.8613, 0.7411, 4.1850, 1.7321 ,0,?1.7321,4.1850,0.7411, 2.8613,6.3634,1.2304,5.1870, 2.5961,3.2053} A14= { 0.0029, 0.0181,0,0.06120,0.0063,0.2083,0.00010.0641,0.3035,0.0641,0.00010.2083,0.0063,0,0.0612,0,0.0181,0.0029} 29
Tab.1  EGHI nodes and weights
|i| i1 i2 X1i1X 1i2 X2 2
3 1 2 { (0,1.732),(0,0), (0,1.732)} {( 0, 1.732),( 0,0),(0,1.732) ( 1.732,0),( 1.732,0),( 0, 2.861), (0,-0.741), (0,4.185),(0,2.861),(0,0.741),( 0,4.185),(1.732, 1.732),( 1.732 ,1.732), (1.732, 1.732),( 1.732,1.732),(2.861,0), (-0.741,0), ( 4.185,0)(2.861, 0),( 0.741,0),( 4.185,0)}
2 1 { ( 1.732,0),( 0,0),( 1.732,0)}
4 1 3 {( 0, 2.861),( 0,- 0.741),( 0, 4.185), (0,1.732),(0,0), (0,1.732),(0 ,2.861),(0 ,0.741),(0 ,4.185)}
2 2 {( 1.732 ,1.732), (1.732,0), (0,0 ), (0,1.732),( 1.732, 1.732),(0,1.732),( 1.732, 1.732),( 1.732,0),( 1.732,1.732)}
3 1 {( 2.861 ,0),(-0.741,0 ),(4.185,0),( 1.732 ,0),(0 ,0),(1.732,0),(2.861, 0),( 0.741,0),( 4.185,0)}
Tab.2  Information on multidimensional nodes X2 2
Fig.1  Construction of multidimensional nodes X2 2
Fig.2  Computational flowchart of proposed method
Moments MCS UDRM (error) SGNI (error) Proposed method (error)
μ 18.6192 18.6108 (0.05%) 18.6132 (0.03%) 18.6132 (0.030%)
σ 6.1305 6.0184 (1.83%) 6.1295 (0.02%) 6.1303 (0.002%)
τ 0.5976 0.2005 (66.45%) 0.5645 (5.53%) 0.5961 (0.240%)
κ 3.5904 3.0546 (14.92%) 2.9026 (19.16%) 3.5548 (0.990%)
Tab.3  Results of first four-order moments of Case 1 in Example 1
Fig.3  PDF of system response in Example 1. (a) PDF of Case 1; (b) PDF of Case 2; (c) PDF of Case 3
Moments MCS SGNI (error) Proposed method (error)
μ 18.6192 18.6132 (0.030%) 18.6132 (0.030%)
σ 6.1305 6.1304 (0.001%) 6.1304 (0.001%)
τ 0.5976 0.5978 (0.040%) 0.5978 (0.040%)
κ 3.5904 3.5964 (0.170%) 3.5962 (0.160%)
Tab.4  Results of first four-order moments of Case 2 in Example 1
Fig.4  The relative error of the first-order moments varies with the dimension n. The relative error of (a) the mean, (b) the standard deviation, (c) the skewness, and (d) the kurtosis varies with the dimension n
Variables Distribution Parameter 1 Parameter 2
X1 Normal 1 0.12
X2 Normal 5 0.5
X3 Weibull 1 5
X4 Uniform 2 6
X5 Lognormal 2 0.2
X6 Beta 2 5
X7 Normal 1 0.12
X8 Normal 1 0.12
X9 Normal 1 0.12
X10 Normal 1 0.12
Tab.5  Distributions of input random variable in Example 2
Moments MCS UDRM (error) SGNI (error) Proposed method (error)
μ 19.5144 20.5589 (5.35%) 19.5616 (0.24%) 19.5133 (0.01%)
σ 7.6417 7.3465 (3.86%) 7.5890 (0.69%) 7.6449 (0.04%)
τ 0.6202 0.2231 (64.04%) 0.4481 (27.75%) 0.6305 (1.65%)
κ 3.7232 3.0687(17.58%) 3.2924 (11.57%) 3.7960 (1.96%)
Tab.6  Results of first four-order moments of Case 1 in Example 2
Fig.5  PDF of system response in Example 2. (a) PDF of Case 1; (b) PDF of Case 2
Moments MCS SGNI (error) Proposed method (error)
μ 19.5144 19.5161 (0.01%) 19.5129 (0.01%)
σ 7.6417 7.6420 (0.004%) 7.6418 (0.002%)
τ 0.6202 0.6063 (2.24%) 0.6095 (1.73%)
κ 3.7232 3.7219 (0.04%) 3.7256 (0.06%)
Tab.7  Results of first four-order moments of Case 2 in Example 2
Fig.6  Finite element model of power amplifier link
Variables Distribution Parameter 1/mm Parameter 2
X1 Normal 4.80 0.033
X2 Normal 0.70 0.001
X3 Normal 0.90 0.017
X4 Normal 3.50 0.017
X5 Normal 1.00 0.001
X6 Normal 2.20 0.033
X7 Normal 12.90 0.017
X8 Normal 45.70 0.017
X9 Normal 96.15 0.017
X10 Normal 73.70 0.017
X11 Uniform 114.00 115 mm
X12 Uniform 129.10 129.5 mm
X13 Normal 133.40 0.017
X14 Normal 147.10 0.017
Tab.8  Distributions of input random variables in Example 3
Moments MCS UDRM (error) SGNI (error) Proposed method (error)
μ −45.0458 −45.3185 (0.60%) −45.0591 (0.03%) −45.0591 (0.03%)
σ 2.6849 2.5567 (4.77%) 2.6809 (0.15%) 2.6856 (0.03%)
τ 0.8739 0.2210 (74.71%) 0.7780 (10.97%) 0.8637 (1.17%)
κ 4.6578 3.5320(24.17%) 3.4343 (26.27%) 4.4685 (4.06%)
Tab.9  First four-order moments of phase difference in Example 3
Fig.7  PDF of phase difference in Example 3
1 Lee S H, Chen W. A comparative study of uncertainty propagation methods for black-box-type problems. Structural and Multidisciplinary Optimization, 2009, 37(3): 239–253
https://doi.org/10.1007/s00158-008-0234-7
2 Wang X, Wang L, Qiu Z. Response analysis based on smallest interval-set of parameters for structures with uncertainty. Applied Mathematics and Mechanics, 2012, 33(9): 1153–1166
https://doi.org/10.1007/s10483-012-1612-6
3 Wang X, Wang L, Qiu Z. A feasible implementation procedure for interval analysis method from measurement data. Applied Mathematical Modelling, 2014, 38(9–10): 2377–2397
https://doi.org/10.1016/j.apm.2013.10.049
4 Qiu Z P, Wang L. The need for introduction of non-probabilistic interval conceptions into structural analysis and design. Science China. Physics, Mechanics & Astronomy, 2016, 59(11): 114632
https://doi.org/10.1007/s11433-016-0329-3
5 Gu X, Renaud J E, Batill S M, et al.Worst case propagated uncertainty of multidisciplinary systems in robust design optimization. Structural and Multidisciplinary Optimization, 2000, 20(3): 190–213
https://doi.org/10.1007/s001580050148
6 Li M, Azarm S. Multiobjective collaborative robust optimization with interval uncertainty and interdisciplinary uncertainty propagation. Journal of Mechanical Design, 2008, 130(8): 081402
https://doi.org/10.1115/1.2936898
7 Li G, Zhang K. A combined reliability analysis approach with dimension reduction method and maximum entropy method. Structural and Multidisciplinary Optimization, 2011, 43(1): 121–134
https://doi.org/10.1007/s00158-010-0546-2
8 Jiang Z, Li W, Apley D W, et al.A spatial-random-process based multidisciplinary system uncertainty propagation approach with model uncertainty. Journal of Mechanical Design, 2015, 137(10): 101402
https://doi.org/10.1115/1.4031096
9 Mazo J, El Badry A T, Carreras J, et al.Uncertainty propagation and sensitivity analysis of thermo-physical properties of phase change materials (PCM) in the energy demand calculations of a test cell with passive latent thermal storage. Applied Thermal Engineering, 2015, 90: 596–608
https://doi.org/10.1016/j.applthermaleng.2015.07.047
10 Li M, Mahadevan S, Missoum S, et al.Special issue: Simulation-based design under uncertainty. Journal of Mechanical Design, 2016, 138(11): 110301
https://doi.org/10.1115/1.4034536
11 Madsen H O, Krenk S, Lind N C. Methods of structural safety. Mineola: Dover Publications, 2006
12 Wilson B M, Smith B L. Taylor-series and Monte-Carlo-method uncertainty estimation of the width of a probability distribution based on varying bias and random error. Measurement Science & Technology, 2013, 24(3): 035301
https://doi.org/10.1088/0957-0233/24/3/035301
13 Rochman D, Zwermann W, van der Marck S C, et al.Efficient use of Monte Carlo: Uncertainty propagation. Nuclear Science and Engineering, 2014, 177(3): 337–349
https://doi.org/10.13182/NSE13-32
14 Hong J, Shaked S, Rosenbaum R K, et al.Analytical uncertainty propagation in life cycle inventory and impact assessment: Application to an automobile front panel. International Journal of Life Cycle Assessment, 2010, 15(5): 499–510
https://doi.org/10.1007/s11367-010-0175-4
15 Xu L. A proportional differential control method for a time-delay system using the Taylor expansion approximation. Applied Mathematics and Computation, 2014, 236: 391–399
https://doi.org/10.1016/j.amc.2014.02.087
16 Low B. FORM, SORM, and spatial modeling in geotechnical engineering. Structural Safety, 2014, 49: 56–64
https://doi.org/10.1016/j.strusafe.2013.08.008
17 Lim J, Lee B, Lee I. Post optimization for accurate and efficient reliability-based design optimization using second-order reliability method based on importance sampling and its stochastic sensitivity analysis. International Journal for Numerical Methods in Engineering, 2015, 107(2): 93–108
18 Lee I, Choi K K, Gorsich D. Sensitivity analyses of FORM-based and DRM-based performance measure approach (PMA) for reliability-based design optimization (RBDO). International Journal for Numerical Methods in Engineering, 2010, 82(1): 26–46
https://doi.org/10.1002/nme.2752
19 Sudret B. Global sensitivity analysis using polynomial chaos expansions. Reliability Engineering & System Safety, 2008, 93(7): 964–979
https://doi.org/10.1016/j.ress.2007.04.002
20 Kersaudy P, Sudret B, Varsier N, et al.A new surrogate modeling technique combining Kriging and polynomial chaos expansions—Application to uncertainty analysis in computational dosimetry. Journal of Computational Physics, 2015, 286: 103–117
https://doi.org/10.1016/j.jcp.2015.01.034
21 Rajabi M M, Ataie-Ashtiani B, Simmons C T. Polynomial chaos expansions for uncertainty propagation and moment independent sensitivity analysis of seawater intrusion simulations. Journal of Hydrology (Amsterdam), 2015, 520: 101–122
https://doi.org/10.1016/j.jhydrol.2014.11.020
22 Rahman S, Xu H. A univariate dimension-reduction method for multi-dimensional integration in stochastic mechanics. Probabilistic Engineering Mechanics, 2004, 19(4): 393–408
https://doi.org/10.1016/j.probengmech.2004.04.003
23 Xu H, Rahman S. A generalized dimension-reduction method for multidimensional integration in stochastic mechanics. International Journal for Numerical Methods in Engineering, 2004, 61(12): 1992–2019
https://doi.org/10.1002/nme.1135
24 Nobile F, Tempone R, Webster C G. A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM Journal on Numerical Analysis, 2008, 46(5): 2309–2345
https://doi.org/10.1137/060663660
25 Xiong F, Greene S, Chen W, et al.A new sparse grid based method for uncertainty propagation. Structural and Multidisciplinary Optimization, 2010, 41(3): 335–349
https://doi.org/10.1007/s00158-009-0441-x
26 He J, Gao S, Gong J. A sparse grid stochastic collocation method for structural reliability analysis. Structural Safety, 2014, 51: 29–34
https://doi.org/10.1016/j.strusafe.2014.06.003
27 Smolyak S A. Quadrature and interpolation formulas for tensor products of certain classes of functions. Doklady Akademii Nauk SSSR, 1963, 4: 240–243
28 Novak E, Ritter K. High dimensional integration of smooth functions over cubes. Numerische Mathematik, 1996, 75(1): 79–97
https://doi.org/10.1007/s002110050231
29 Novak E, Ritter K. Simple cubature formulas with high polynomial exactness. Constructive Approximation, 1999, 15(4): 499–522
https://doi.org/10.1007/s003659900119
30 Bathe K, Wilson E. Stability and accuracy analysis of direct integration methods. Earthquake Engineering & Structural Dynamics, 1972, 1(3): 283–291
https://doi.org/10.1002/eqe.4290010308
31 Tao J, Zeng X, Cai W, et al.Stochastic sparse-grid collocation algorithm (SSCA) for periodic steady-state analysis of nonlinear system with process variations. In: Proceedings of the 2007 Asia and South Pacific Design Automation Conference. IEEE, 2007, 474–479
https://doi.org/10.1109/ASPDAC.2007.358031
32 Jia B, Xin M, Cheng Y. Sparse Gauss-Hermite quadrature filter for spacecraft attitude estimation. In: Proceedings of the 2010 American Control Conference. Baltimore: IEEE, 2010, 2873–2878
https://doi.org/10.1109/ACC.2010.5531487
33 Petvipusit K R, Elsheikh A H, Laforce T C, et al.Robust optimisation of CO2 sequestration strategies under geological uncertainty using adaptive sparse grid surrogates. Computational Geosciences, 2014, 18(5): 763–778
https://doi.org/10.1007/s10596-014-9425-z
34 Chen H, Cheng X, Dai C, et al.Accuracy, efficiency and stability analysis of sparse-grid quadrature Kalman filter in near space hypersonic vehicles. In: Proceedings of Position, Location and Navigation Symposium-PLANS 2014, 2014 IEEE/ION. Monterey: IEEE, 2014, 27–36
https://doi.org/10.1109/PLANS.2014.6851354
35 KendallM G, Stuart A. The Advanced Theory of Statistics Volume 1: Distribution Theory. London: Charles Griffin & Company, 1958
36 Press W H, Teukolsky S A, Vetterling W T, et al.Numerical recipes in C. Cambridge: Cambridge University Press, 1996
37 Ghosh D D, Olewnik A. Computationally efficient imprecise uncertainty propagation. Journal of Mechanical Design, 2013, 135(5): 051002
https://doi.org/10.1115/1.4023921
38 Ahlfeld R, Belkouchi B, Montomoli F. SAMBA: Sparse approximation of moment-based arbitrary polynomial chaos. Journal of Computational Physics, 2016, 320: 1–16
https://doi.org/10.1016/j.jcp.2016.05.014
39 Patterson T. Modified optimal quadrature extensions. Numerische Mathematik, 1993, 64(1): 511–520
https://doi.org/10.1007/BF01388702
40 Kronrod A S.Nodes and Weights of Quadrature Formulas: Sixteen-place Tables. New York: Consultants Bureau, 1965
41 Patterson T. The optimum addition of points to quadrature formulae. Mathematics of Computation, 1968, 22(104): 847–856
https://doi.org/10.1090/S0025-5718-68-99866-9
42 Genz A, Keister B D. Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weight. Journal of Computational and Applied Mathematics, 1996, 71(2): 299–309
https://doi.org/10.1016/0377-0427(95)00232-4
43 Scarth C, Cooper J E, Weaver P M, et al.Uncertainty quantification of aeroelastic stability of composite plate wings using lamination parameters. Composite Structures, 2014, 116: 84–93
https://doi.org/10.1016/j.compstruct.2014.05.007
44 Feinberg J, Langtangen H P. Chaospy: An open source tool for designing methods of uncertainty quantification. Journal of Computational Science, 2015, 11: 46–57
https://doi.org/10.1016/j.jocs.2015.08.008
45 Huang B, Du X. Uncertainty analysis by dimension reduction integration and saddlepoint approximations. Journal of Mechanical Design, 2006, 128(1): 26–33
https://doi.org/10.1115/1.2118667
46 Gerstner T, Griebel M. Numerical integration using sparse grids. Numerical Algorithms, 1998, 18(3–4): 209–232
https://doi.org/10.1023/A:1019129717644
47 Heiss F, Winschel V. Likelihood approximation by numerical integration on sparse grids. Journal of Econometrics, 2008, 144(1): 62–80
https://doi.org/10.1016/j.jeconom.2007.12.004
48 Jaynes E T. Information theory and statistical mechanics. Physical Review, 1957, 106(4): 620–630
https://doi.org/10.1103/PhysRev.106.620
49 Phillips S J, Anderson R P, Schapire R E. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 2006, 190(3–4): 231–259
https://doi.org/10.1016/j.ecolmodel.2005.03.026
50 Mohammad-Djafari A. A Matlab program to calculate the maximum entropy distributions. In: Smith C R, Erickson G J, Neudorfer P O, eds. Maximum Entropy and Bayesian Methods. Dordrecht: Springer, 1992, 221–233
51 Yeo S K, Chun J H, Kwon Y S. A 3-D X-band T/R module package with an anodized aluminum multilayer substrate for phased array radar applications. IEEE Transactions on Advanced Packaging, 2010, 33(4): 883–891
https://doi.org/10.1109/TADVP.2010.2049109
52 Pamies Porras M J, Bertuch T, Loecker C, et al.An AESA antenna comprising an RF feeding network with strongly coupled antenna ports. IEEE Transactions on Antennas and Propagation, 2015, 63(1): 182–194
https://doi.org/10.1109/TAP.2014.2368575
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed