Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2020, Vol. 15 Issue (1) : 123-132    https://doi.org/10.1007/s11465-019-0556-8
RESEARCH ARTICLE
Contact fatigue life prediction of a bevel gear under spectrum loading
Pan JIA1, Huaiju LIU1(), Caichao ZHU1, Wei WU2, Guocheng LU3
1. State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing 400044, China
2. National Key Laboratory of Vehicular Transmission, Beijing Institute of Technology, Beijing 100081, China
3. Propulsion Development Department, Chongqing Changan New Energy Vehicles Technology, Chongqing 401133, China
 Download: PDF(1402 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Rolling contact fatigue (RCF) issues, such as pitting, might occur on bevel gears because load fluctuation induces considerable subsurface stress amplitudes. Such issues can dramatically affect the service life of associated machines. An accurate geometry model of a hypoid gear utilized in the main reducer of a heavy-duty vehicle is developed in this study with the commercial gear design software MASTA. Multiaxial stress–strain states are simulated with the finite element method, and the RCF life is predicted using the Brown–Miller–Morrow fatigue criterion. The patterns of fatigue life on the tooth surface are simulated under various loading levels, and the RCF S–N curve is numerically generated. Moreover, a typical torque–time history on the driven axle is described, followed by the construction of program load spectrum with the rain flow method and the Goodman mean stress equation. The effects of various fatigue damage accumulation rules on fatigue life are compared and discussed in detail. Predicted results reveal that the Miner linear rule provides the most optimistic result among the three selected rules, and the Manson bilinear rule produces the most conservative result.

Keywords bevel gear      rolling contact fatigue (RCF)      multiaxial fatigue criterion      load spectrum      damage accumulation rule     
Corresponding Author(s): Huaiju LIU   
Just Accepted Date: 04 November 2019   Online First Date: 09 December 2019    Issue Date: 21 February 2020
 Cite this article:   
Pan JIA,Huaiju LIU,Caichao ZHU, et al. Contact fatigue life prediction of a bevel gear under spectrum loading[J]. Front. Mech. Eng., 2020, 15(1): 123-132.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-019-0556-8
https://academic.hep.com.cn/fme/EN/Y2020/V15/I1/123
Fig.1  Calculation flow chart.
Hypoid gear pair Number of teeth Gear module/mm Width of a tooth/mm Pitch diameter d/mm Average pressure angle/(° ) Spiral angle/(° ) Hand Cutter radius/mm
Pinion 9 12 76 129.8 20 45 Left
Wheel 41 12 70 492.0 20 45 Right 177.8
Tab.1  Basic parameters of a hypoid gear pair
Fig.2  Gleason hypoid gear pair studied in this work.
Fig.3  Finite element contact model of a gear pair.
Fig.4  Typical torque history of the output axle.
Fig.5  Torque mean amplitude frequency histogram.
Fig.6  Probability densities of mean torque and amplitude. (a) Torque amplitude frequency histogram; (b) torque amplitude probability density; (d) mean torque frequency histogram; (e) mean torque probability density.
Mean/(N?m) Loading cycle number
496.5 N?m 1092.3 N?m 1688 N?m 2284 N?m 2879.8 N?m 3376.3 N?m 3773.5 N?m 3972 N?m
496.5 367 42 14 7 3 2 0 0
993.0 12400 1430 487 222 116 57 31 12
1489.5 119000 13600 4660 2120 1110 549 300 117
1986.0 330000 37800 12900 5890 3080 1520 829 325
2482.5 270000 31000 10600 4830 2530 1250 680 266
2979.0 65300 7500 2560 1170 610 302 164 64
3475.5 4540 521 178 81 42 21 11 4
3972.0 88 10 3 2 0 0 0 0
Tab.2  The matrix of loading cycle under various amplitudes and mean values of torque
Load/(N?m) Cycle number
600.0 850000
1319.5 83700
2039.3 26500
2750.0 11200
3470.0 5700
4067.5 3200
4545.0 1400
4785.0 572
Tab.3  Eight-level standard load spectrum
Fig.7  Manson bilinear rule.
Fig.8  Distributions of contact pressure and von Mises at a torque of 500 N?m.
Fig.9  Contact fatigue life at various loading levels.
Fig.10  Evolutions of stress components during a loading cycle.
Fig.11  Contact fatigue S–N curve of driven gear.
Fig.12  Damage with two-stage loading under different criteria.
1 Niemann G, Rettig H, Lechner G. Scuffing tests on gear oils in the FZG apparatus. A S L E Transactions, 1961, 4(1): 71–86
https://doi.org/10.1080/05698196108972421
2 B R Höhn, K Michaelis, A Doleschel. Frictional behaviour of synthetic gear lubricants. Tribology Series, 2001, 39: 759–768
https://doi.org/10.1016/S0167-8922(01)80156-5
3 H He, H Liu, C Zhu, et al. Study of rolling contact fatigue behavior of a wind turbine gear based on damage-coupled elastic-plastic model. International Journal of Mechanical Sciences, 2018, 141: 512–519
https://doi.org/10.1016/j.ijmecsci.2018.03.044
4 P J L Fernandes, C McDuling. Surface contact fatigue failures in gears. Engineering Failure Analysis, 1997, 4(2): 99–107
https://doi.org/10.1016/S1350-6307(97)00006-X
5 H Liu, H Liu, C Zhu, et al. Evaluation of contact fatigue life of a wind turbine gear pair considering residual stress. Journal of Tribology, 2018, 140(4): 041102
https://doi.org/10.1115/1.4039164
6 A Carpinteri, A Spagnoli, S Vantadori. A review of multiaxial fatigue criteria for random variable amplitude loads. Fatigue & Fracture of Engineering Materials & Structures, 2017, 40(7): 1007–1036
https://doi.org/10.1111/ffe.12619
7 W Wang, H Liu, C Zhu, et al. Effect of the residual stress on contact fatigue of a wind turbine carburized gear with multiaxial fatigue criteria. International Journal of Mechanical Sciences, 2019, 151: 263–273
https://doi.org/10.1016/j.ijmecsci.2018.11.013
8 W Wang, H Liu, C Zhu, et al. Micromechanical analysis of gear fatigue-ratcheting damage considering the phase state and inclusion. Tribology International, 2019, 136: 182–195
https://doi.org/10.1016/j.triboint.2019.03.040
9 Z R Wu, X T Hu, Y D Song. Multiaxial fatigue life prediction for titanium alloy TC4 under proportional and nonproportional loading. International Journal of Fatigue, 2014, 59: 170–175
https://doi.org/10.1016/j.ijfatigue.2013.08.028
10 S P Zhu, Z Y Yu, J Correia, et al. Evaluation and comparison of critical plane criteria for multiaxial fatigue analysis of ductile and brittle materials. International Journal of Fatigue, 2018, 112: 279–288
https://doi.org/10.1016/j.ijfatigue.2018.03.028
11 F L Litvin, A Fuentes, K Hayasaka. Design, manufacture, stress analysis, and experimental tests of low-noise high endurance spiral bevel gears. Mechanism and Machine Theory, 2006, 41(1): 83–118
https://doi.org/10.1016/j.mechmachtheory.2005.03.001
12 T Sekercioglu, V Kovan. Pitting failure of truck spiral bevel gear. Engineering Failure Analysis, 2007, 14(4): 614–619
https://doi.org/10.1016/j.engfailanal.2006.03.002
13 I Bhavi, V Kuppast, S Kurbet. Experimental setup and methodology to carryout fatigue testing of spiral bevel gears used in differential gear box using NVH approach. Applied Mechanics and Materials, 2016, 852: 545–550
https://doi.org/10.4028/www.scientific.net/AMM.852.545
14 A Ural, G Heber, P A Wawrzynek, et al. Three-dimensional, parallel, finite element simulation of fatigue crack growth in a spiral bevel pinion gear. Engineering Fracture Mechanics, 2005, 72(8): 1148–1170
https://doi.org/10.1016/j.engfracmech.2004.08.004
15 S Deng, L Hua, X Han, et al. Finite element analysis of contact fatigue and bending fatigue of a theoretical assembling straight bevel gear pair. Journal of Central South University, 2013, 20(2): 279–292
https://doi.org/10.1007/s11771-013-1486-y
16 F Liu, W Wu, J Hu, et al. Design of multi-range hydro-mechanical transmission using modular method. Mechanical Systems and Signal Processing, 2019, 126: 1–20
https://doi.org/10.1016/j.ymssp.2019.01.061
17 S Liu, C Song, C Zhu, et al. Investigation on the influence of work holding equipment errors on contact characteristics of face-hobbed hypoid gear. Mechanism and Machine Theory, 2019, 138: 95–111
https://doi.org/10.1016/j.mechmachtheory.2019.03.042
18 S Medepalli, R Rao. Prediction of road loads for fatigue design—A sensitivity study. International Journal of Vehicle Design, 2000, 23(1–2): 161–175
https://doi.org/10.1504/IJVD.2000.001889
19 X Liu, D Li, W Lv, et al. Research on analysis approach of strength and fatigue life of horizontal axis wind turbine hub. Acta Energiae Solaris Sinica, 2012, 5: 18–23 (in Chinese)
20 V Shinde, J Jha, A Tewari, et al. Modified rainflow counting algorithm for fatigue life calculation. In: Seetharamu S, Rao K, Khare R, eds. Proceedings of Fatigue, Durability and Fracture Mechanics. Singapore: Springer, 2018, 381–387
https://doi.org/10.1007/978-981-10-6002-1_30
21 H Mayer, C Ede, J E Allison. Influence of cyclic loads below endurance limit or threshold stress intensity on fatigue damage in cast aluminium alloy 319-T7. International Journal of Fatigue, 2005, 27(2): 129–141
https://doi.org/10.1016/j.ijfatigue.2004.06.004
22 H Hu, Y M Yan. Light bus drive axle design. Applied Mechanics and Materials, 2013, 380–384: 17–22
https://doi.org/10.4028/www.scientific.net/AMM.380-384.17
23 A Carpinteri, A Spagnoli. Multiaxial high-cycle fatigue criterion for hard metals. International Journal of Fatigue, 2001, 23(2): 135–145
https://doi.org/10.1016/S0142-1123(00)00075-X
24 A P Patra, S Bidhar, U Kumar. Failure prediction of rail considering rolling contact fatigue. International Journal of Reliability Quality and Safety Engineering, 2010, 17(03): 167–177
https://doi.org/10.1142/S0218539310003731
25 M W Brown, K J Miller. A theory for fatigue failure under multiaxial stress-strain conditions. Proceedings of Institution of Mechanical Engineers, 1973, 187(1): 745–755
https://doi.org/10.1243/PIME_PROC_1973_187_161_02
26 S V Kumbhar, V Kulkarni, R M Tayade. Low cycle fatigue analysis of after treatment device induced due to thermal load by using finite element analysis. Applied Mechanics and Materials, 2014, 592–594: 1104–1108
https://doi.org/10.4028/www.scientific.net/AMM.592-594.1104
27 B Z Wen, J M Li, Z T Pei, et al. Statistical analysis of loader’s drive axle housing random load spectrum. Advanced Materials Research, 2011, 338: 456–459
https://doi.org/10.4028/www.scientific.net/AMR.338.456
28 V Grubisic, G Fischer, M Heinritz. Design Optimization of Forged Wheel Hubs for Commercial Vehicles. SAE Technical Paper 841706, 1984
https://doi.org/10.4271/841706
29 D Batsoulas Nikolaos. Cumulative Fatigue Damage: CDM-Based Engineering Rule and Life Prediction Aspect. Steel Research International, 2016, 87(12): 1670–1677
https://doi.org/10.1002/srin.201600048
30 K Rege, D G Pavlou. A one-parameter nonlinear fatigue damage accumulation model. International Journal of Fatigue, 2017, 98: 234–246
https://doi.org/10.1016/j.ijfatigue.2017.01.039
31 L H Zhao, H C Cai, T Wang, et al. Durability assessment of automotive structures under random variable amplitude loading. Advances in Mechanical Engineering, 2018, 10(4): 1687814 018771766
https://doi.org/10.1177/1687814018771766
32 Q Han, Q Guo, Y Yin, et al. Effects of strain ratio on fatigue behavior of G20Mn5QT cast steel. Transactions of Tianjin University, 2016, 22(4): 302–307
https://doi.org/10.1007/s12209-016-2682-2
[1] Yun-Shuai SU, Shu-Rong YU, Shu-Xin LI, Yan-Ni HE. Review of the damage mechanism in wind turbine gearbox bearings under rolling contact fatigue[J]. Front. Mech. Eng., 2019, 14(4): 434-441.
[2] Zhenyun DUAN, Houjun CHEN, Zhilan JU, Jian LIU. Mathematical model and manufacture programming of loxodromic-type normal circular-arc spiral bevel gear[J]. Front Mech Eng, 2012, 7(3): 312-321.
[3] LIU Ke-ge, YAN Chu-liang, ZHANG Shu-ming. Estimation of fatigue damage of airplane landing gear[J]. Front. Mech. Eng., 2006, 1(4): 424-428.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed