Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2020, Vol. 15 Issue (1) : 133-150    https://doi.org/10.1007/s11465-019-0557-7
RESEARCH ARTICLE
Computation and investigation of mode characteristics in nonlinear system with tuned/mistuned contact interface
Houxin SHE1, Chaofeng LI1,2(), Qiansheng TANG1, Hui MA1,2, Bangchun WEN1,2
1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
2. Key Laboratory of Vibration and Control of Aero-Propulsion System (Ministry of Education), Northeastern University, Shenyang 110819, China
 Download: PDF(4670 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This study derived a novel computation algorithm for a mechanical system with multiple friction contact interfaces that is well-suited to the investigation of nonlinear mode characteristic of a coupling system. The procedure uses the incremental harmonic balance method to obtain the nonlinear parameters of the contact interface. Thereafter, the computed nonlinear parameters are applied to rebuild the matrices of the coupling system, which can be easily solved to calculate the nonlinear mode characteristics by standard iterative solvers. Lastly, the derived method is applied to a cycle symmetry system, which represents a shaft–disk–blade system subjected to dry friction. Moreover, this study analyzed the effects of the tuned and mistuned contact features on the nonlinear mode characteristics. Numerical results prove that the proposed method is particularly suitable for the study of nonlinear characteristics in such nonlinear systems.

Keywords coupling vibration      nonlinear mode      original algorithm      contact interface     
Corresponding Author(s): Chaofeng LI   
Just Accepted Date: 19 November 2019   Online First Date: 19 December 2019    Issue Date: 21 February 2020
 Cite this article:   
Houxin SHE,Chaofeng LI,Qiansheng TANG, et al. Computation and investigation of mode characteristics in nonlinear system with tuned/mistuned contact interface[J]. Front. Mech. Eng., 2020, 15(1): 133-150.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-019-0557-7
https://academic.hep.com.cn/fme/EN/Y2020/V15/I1/133
Fig.1  Diagram of the lumped SDB model.
Fig.2  Structure diagram of the dry friction.
Fig.3  Algorithm of the nonlinear analysis.
Fig.4  (a) Amplitude–frequency response of the blade root, (b) nonlinear damping, and (c) nonlinear stiffness of an SDB system.
Fig.5  Amplitude–frequency response curves for different excitation levels when W= 200 rad/s: (a) Blade body; (b) blade root.
Fig.6  Nonlinear parameters of the contact interface in Sector 1 for W= 200 rad/s, F =500 N: (a) Nonlinear stiffness; (b) nonlinear damping.
Fig.7  Variations of the natural frequencies for W= 200 rad/s and F = 500 N: (a) Blade body; (b) blade root.
Sector Natural frequency (ω = 200 Hz)/Hz Natural frequency (ω = 250 Hz)/Hz
Blade Body Blade Root Shaft Disk Blade Body Blade Root Shaft Disk
1 253.2769 1836.3942 153.5851 2313.1122 229.2292 977.9689 152.6156 2277.6773
2 253.2769 1836.3942 2313.1122 229.2292 977.9689 2277.6773
3 253.3133 1855.3368 2875.0239 229.2587 978.5021 2858.6677
4 253.3133 1855.3368 2875.0239 229.2587 978.5021 2858.6677
5 253.3342 1860.8601 3510.4298 229.2757 978.7749 3499.9044
6 253.3342 1860.8601 3510.4298 229.2757 978.7749 3499.9044
7 253.3446 1862.9076 4048.8739 229.2841 978.9029 4040.6643
8 253.3446 1862.9076 4048.8739 229.2841 978.9029 4040.6643
9 253.3494 1863.7412 4125.2422 229.2880 978.9605 4123.3330
10 253.3494 1863.7412 4401.7604 229.2880 978.9605 4394.5509
11 253.3508 1863.9731 4401.7604 229.2892 978.9772 4394.5509
12 262.5346 1878.8707 4524.0797 239.6277 983.6187 4517.1575
Tab.1  Natural frequency of the tuned coupling system for ω = 200 Hz and ω = 250 Hz
Fig.8  Mode shapes of the tuned coupling system for ω = 200 Hz. (a) Sector 1; (b) Sector 2; (c) Sector 3; (d) Sector 4; (e) Sector 5; (f) Sector 6; (g) Sector 7; (h) Sector 8; (i) Sector 9; (j) Sector 10; (k) Sector 11; (l) Sector 12.
Fig.9  Mode shapes of the tuned coupling system for ω= 250 Hz. (a) Sector 1; (b) Sector 2; (c) Sector 3; (d) Sector 4; (e) Sector 5; (f) Sector 6; (g) Sector 7; (h) Sector 8; (i) Sector 9; (j) Sector 10; (k) Sector 11; (l) Sector 12.
Sector Random mistuning friction coefficient
1 0.311
2 0.326
3 0.310
4 0.311
5 0.297
6 0.289
7 0.271
8 0.306
9 0.280
10 0.261
11 0.318
12 0.299
Tab.2  Values of the random mistuning friction coefficient μ in the different contact interfaces
Fig.10  Amplitude–frequency response curves for F = 500 N and W= 200 rad/s under mistuned friction coefficient case: (a) Blade body; (b) blade root.
Fig.11  Nonlinear parameters of the contact interfaces in the different sectors for W= 200 rad/s and F = 500 N under mistuned friction coefficient case: (a) Nonlinear stiffness; (b) nonlinear damping.
Fig.12  Variations of the natural frequencies for W= 200 rad/s and F = 500 N under mistuned friction coefficient case: (a) Blade body, (b) blade root.
Sector Natural frequency (ω = 200 Hz)/Hz Natural frequency (ω = 250 Hz)/Hz
Blade body Blade root Shaft Disk Blade body Blade root Shaft Disk
1 253.2769 1836.3942 153.5851 2313.1122 224.9295 925.3268 152.5889 2277.5969
2 253.2769 1836.3942 2313.1122 225.6163 930.8274 2277.6629
3 253.3133 1855.3368 2875.0239 227.1697 950.9701 2858.5518
4 253.3133 1855.3368 2875.0239 227.7164 955.5698 2858.7146
5 253.3342 1860.8601 3510.4298 228.5753 966.5974 3499.8755
6 253.3342 1860.8601 3510.4298 229.5426 982.2695 349.9880
7 253.3446 1862.9076 4048.8739 229.7237 983.1077 4040.5895
8 253.3446 1862.9076 4048.8739 229.9858 987.5018 4040.6938
9 253.3494 1863.7412 4125.2422 230.4309 989.6337 4123.3277
10 253.3494 1863.7412 4401.7604 231.1232 997.7133 4394.5169
11 253.3508 1863.9731 4401.7604 231.6311 1008.8343 4394.5436
12 262.5346 1878.8707 4524.0797 239.5725 1014.4355 4517.1376
Tab.3  Natural frequency of the coupling system for ω = 200 Hz and ω = 250 Hz under mistuned friction coefficient case
Fig.13  Mode shapes of the SDB system with mistuned friction coefficient for ω = 200 Hz. (a) Sector 1; (b) Sector 2; (c) Sector 3; (d) Sector 4; (e) Sector 5; (f) Sector 6; (g) Sector 7; (h) Sector 8; (i) Sector 9; (j) Sector 10; (k) Sector 11; (l) Sector 12.
Fig.14  Mode shapes of the SDB system with mistuned friction coefficient for ω = 250 Hz. (a) Sector 1; (b) Sector 2; (c) Sector 3; (d) Sector 4; (e) Sector 5; (f) Sector 6; (g) Sector 7; (h) Sector 8; (i) Sector 9; (j) Sector 10; (k) Sector 11; (l) Sector 12.
Sector Random mistuning contact stiffness coefficient/(106 m?s–1)
1 8.206
2 7.713
3 7.986
4 8.045
5 7.956
6 7.183
7 8.240
8 8.155
9 8.194
10 7.802
11 8.307
12 7.849
Tab.4  Values of the random mistuning contact stiffness coefficients kt in the different contact interfaces
Fig.15  Amplitude–frequency response curves for F = 500 N and W= 200 rad/s under mistuned contact stiffness case: (a) Blade body; (b) blade root.
Fig.16  Nonlinear parameters of the contact interfaces in different sectors for W= 200 rad/s and F = 500 N under mistuned contact stiffness case: (a) Nonlinear stiffness; (b) nonlinear damping.
Fig.17  Variations of the natural frequencies for W= 200 rad/s and F = 500 N under mistuned contact stiffness case: (a) Blade body; (b) blade root.
Sector ω = 200 Hz ω = 250 Hz
Blade Body Blade Root Shaft Disk Blade Body Blade Root Shaft Disk
1 252.5143 1767’6760 153.5837 231.2356 228.9848 974.8533 152.6094 2277.6532
2 253.0586 1823.3982 2313.5381 229.0257 975.3624 2277.6628
3 253.1508 1833.8829 2874.6105 229.0434 975.6548 2858.6492
4 253.2028 1839.6541 2875.2533 229.0502 975.7721 2858.6591
5 253.3003 1852.8047 3509.9887 229.0792 976.1677 3499.8861
6 253.3580 1855.4957 3510.7562 229.0841 976.2503 3499.9020
7 253.3931 1865.3426 4048.6993 229.0875 976.2760 4040.6524
8 253.4973 1872.5862 4048.9612 229.2182 977.6082 4040.6588
9 253.5149 1880.6315 4125.2322 229.2674 978.6491 4123.3310
10 253.5453 1882.9722 4401.6487 229.2935 978.9403 4394.5410
11 253.5975 1887.2574 4401.7967 229.4777 980.5990 4394.5449
12 262.5051 1896.7463 4524.0438 239.5138 983.3419 4517.1499
Tab.5  Natural frequency (Hz) of the coupling system for ω = 200 Hz and ω = 250 Hz under mistuned contact stiffness case
Fig.18  Mode shapes of the SDB system with mistuned contact stiffness for ω = 200 Hz. (a) Sector 1; (b) Sector 2; (c) Sector 3; (d) Sector 4; (e) Sector 5; (f) Sector 6; (g) Sector 7; (h) Sector 8; (i) Sector 9; (j) Sector 10; (k) Sector 11; (l) Sector 12.
Fig.19  Mode shapes of the SDB system with mistuned contact stiffness for ω = 250 Hz. (a) Sector 1; (b) Sector 2; (c) Sector 3; (d) Sector 4; (e) Sector 5; (f) Sector 6; (g) Sector 7; (h) Sector 8; (i) Sector 9; (j) Sector 10; (k) Sector 11; (l) Sector 12.
1 S B Chun, C W Lee. Vibration analysis of shaft-bladed disk system by using substructure synthesis and assumed modes method. Journal of Sound and Vibration, 1996, 189(5): 587–608
https://doi.org/10.1006/jsvi.1996.0038
2 C H Yang, S C Huang. The influence of disk’s flexibility on coupling vibration of shaft–disk–blades systems. Journal of Sound and Vibration, 2007, 301(1–2): 1–17
https://doi.org/10.1016/j.jsv.2006.01.053
3 Y J Chiu, S C Huang. The influence on coupling vibration of a rotor system due to a mistuned blade length. International Journal of Mechanical Sciences, 2007, 49(4): 522–532
https://doi.org/10.1016/j.ijmecsci.2006.05.016
4 F Wang, W Zhang. Stability analysis of a nonlinear rotating blade with torsional vibrations. Journal of Sound and Vibration, 2012, 331(26): 5755–5773
https://doi.org/10.1016/j.jsv.2012.05.024
5 H X She, C F Li, Q S Tang, et al. The investigation of the coupled vibration in a flexible-disk blades system considering the influence of shaft bending vibration. Mechanical Systems and Signal Processing, 2018, 111: 545–569
https://doi.org/10.1016/j.ymssp.2018.03.044
6 C F Li, H X She, Q S Tang, et al. The coupling vibration characteristics of a flexible shaft-disk-blades system with mistuned features. Applied Mathematical Modelling, 2019, 67: 557–572
https://doi.org/10.1016/j.apm.2018.09.041
7 M H Yao, Y P Chen, W Zhang. Nonlinear vibrations of blade with varying rotating speed. Nonlinear Dynamics, 2012, 68(4): 487–504
https://doi.org/10.1007/s11071-011-0231-z
8 M H Yao, W Zhang, Y P Chen. Analysis on nonlinear oscillations and resonant responses of a compressor blade. Acta Mechanica, 2014, 225(12): 3483–3510
https://doi.org/10.1007/s00707-014-1151-z
9 D X Cao, B Y Liu, M H Yao, et al. Free vibration analysis of a pre-twisted sandwich blade with thermal barrier coatings layers. Science China Technological Sciences, 2017, 60(11): 1747–1761
https://doi.org/10.1007/s11431-016-9011-5
10 X D Yang, S W Wang, W Zhang, et al. Model formulation and modal analysis of a rotating elastic uniform Timoshenko beam with setting angle. European Journal of Mechanics-A/Solids, 2018, 72: 209–222
https://doi.org/10.1016/j.euromechsol.2018.05.014
11 E P Petrov, D J Ewins. Effects of damping and varying contact area at blade-disk joints in forced response analysis of bladed disk assemblies. Journal of Turbomachinery, 2006, 128(2): 403–410
https://doi.org/10.1115/1.2181998
12 E P Petrov. Explicit finite element models of friction dampers in forced response analysis of bladed disks. Journal of Engineering for Gas Turbines and Power, 2008, 130(2): 022502
https://doi.org/10.1115/1.2772633
13 E Ciğeroğlu, H N Özgüven. Nonlinear vibration analysis of bladed disks with dry friction dampers. Journal of Sound and Vibration, 2006, 295(3–5): 1028–1043
https://doi.org/10.1016/j.jsv.2006.02.009
14 F Georgiades, M Peeters, G Kerschen, et al. Modal analysis of a nonlinear periodic structure with cyclic symmetry. AIAA Journal, 2009, 47(4): 1014–1025
https://doi.org/10.2514/1.40461
15 M Peeters, R Viguié, G Sérandour, et al. Nonlinear normal modes, Part II: Toward a practical computation using numerical continuation techniques. Mechanical Systems and Signal Processing, 2009, 23(1): 195–216
https://doi.org/10.1016/j.ymssp.2008.04.003
16 S Zucca, C M Firrone, M M Gola. Numerical assessment of friction damping at turbine blade root joints by simultaneous calculation of the static and dynamic contact loads. Nonlinear Dynamics, 2012, 67(3): 1943–1955
https://doi.org/10.1007/s11071-011-0119-y
17 M Lassalle, C M Firrone. A parametric study of limit cycle oscillation of a bladed disk caused by flutter and friction at the blade root joints. Journal of Fluids and Structures, 2018, 76: 349–366
https://doi.org/10.1016/j.jfluidstructs.2017.10.004
18 C F Li, Z C Shen, B F Zhong, et al. Study on the nonlinear characteristics of a rotating flexible blade with dovetail interface feature. Shock and Vibration, 2018, 2018: 4923898
https://doi.org/10.1155/2018/4923898
19 C Joannin, F Thouverez, B Chouvion. Reduced-order modelling using nonlinear modes and triple nonlinear modal synthesis. Computers & Structures, 2018, 203: 18–33
https://doi.org/10.1016/j.compstruc.2018.05.005
20 C Joannin, B Chouvion, F Thouverez, et al. Nonlinear modal analysis of mistuned periodic structures subjected to dry friction. Journal of Engineering for Gas Turbines and Power, 2016, 138(7): 072504
https://doi.org/10.1115/1.4031886
21 C Joannin, B Chouvion, F Thouverez, et al. A nonlinear component mode synthesis method for the computation of steady-state vibrations in non-conservative systems. Mechanical Systems and Signal Processing, 2017, 83: 75–92
https://doi.org/10.1016/j.ymssp.2016.05.044
22 E P Petrov, D J Ewins. Advanced modeling of underplatform friction dampers for analysis of bladed disk vibration. Journal of Turbomachinery, 2007, 129(1): 143–150
https://doi.org/10.1115/1.2372775
23 C M Firrone, S Zucca, M M Gola. The effect of underplatform dampers on the forced response of bladed disks by a coupled static/dynamic harmonic balance method. International Journal of Non-linear Mechanics, 2011, 46(2): 363–375
https://doi.org/10.1016/j.ijnonlinmec.2010.10.001
24 T Berruti, C M Firrone, M M Gola. A test rig for noncontact traveling wave excitation of a bladed disk with underplatform dampers. Journal of Engineering for Gas Turbines and Power, 2011, 133(3): 032502
https://doi.org/10.1115/1.4002100
25 D Zhang, J Fu, Q Zhang, et al. An effective numerical method for calculating nonlinear dynamics of structures with dry friction: Application to predict the vibration response of blades with underplatform dampers. Nonlinear Dynamics, 2017, 88(1): 223–237
https://doi.org/10.1007/s11071-016-3239-6
26 L Pesaresi, L Salles, A Jones, et al. Modelling the nonlinear behaviour of an underplatform damper test rig for turbine applications. Mechanical Systems and Signal Processing, 2017, 85: 662–679
https://doi.org/10.1016/j.ymssp.2016.09.007
27 L Pesaresi, J Armand, C W Schwingshackl, et al. An advanced underplatform damper modelling approach based on a microslip contact model. Journal of Sound and Vibration, 2018, 436: 327–340
https://doi.org/10.1016/j.jsv.2018.08.014
28 S Zucca, C M Firrone. Nonlinear dynamics of mechanical systems with friction contacts: Coupled static and dynamic Multi-Harmonic Balance Method and multiple solutions. Journal of Sound and Vibration, 2014, 333(3): 916–926
https://doi.org/10.1016/j.jsv.2013.09.032
[1] Hamed HABIBI, Hamed RAHIMI NOHOOJI, Ian HOWARD. Power maximization of variable-speed variable-pitch wind turbines using passive adaptive neural fault tolerant control[J]. Front. Mech. Eng., 2017, 12(3): 377-388.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed