Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2020, Vol. 15 Issue (2) : 303-318    https://doi.org/10.1007/s11465-019-0562-x
RESEARCH ARTICLE
Laser sintering of Cu nanoparticles on PET polymer substrate for printed electronics at different wavelengths and process conditions
Juan Carlos HERNANDEZ-CASTANEDA1, Boon Keng LOK1, Hongyu ZHENG2()
1. Singapore Institute of Manufacturing Technology, Singapore 138634, Singapore
2. School of Mechanical Engineering, Shandong University of Technology, Zibo 255049, China
 Download: PDF(2152 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This study explores the feasibility of different laser systems to sinter screen-printed lines from nonconductive copper nanoparticles (Cu NPs) on polyethylene terephthalate polymer film. These materials are commonly used in manufacturing functional printed electronics for large-area applications. Here, optical and thermal characterization of the materials is conducted to identify suitable laser sources and process conditions. Direct diode (808 nm), Nd:YAG (1064 nm and second harmonic of 532 nm), and ytterbium fiber (1070 nm) lasers are explored. Optimal parameters for sintering the Cu NPs are identified for each laser system, which targets low resistivity and high processing speed. Finally, the quality of the sintered tracks is quantified, and the laser sintering mechanisms observed under different wavelengths are analyzed. Practical considerations are discussed to improve the laser sintering process of Cu NPs.

Keywords laser sintering      copper nanoparticles      printed electronics     
Corresponding Author(s): Hongyu ZHENG   
Just Accepted Date: 02 December 2019   Online First Date: 20 December 2019    Issue Date: 25 May 2020
 Cite this article:   
Juan Carlos HERNANDEZ-CASTANEDA,Boon Keng LOK,Hongyu ZHENG. Laser sintering of Cu nanoparticles on PET polymer substrate for printed electronics at different wavelengths and process conditions[J]. Front. Mech. Eng., 2020, 15(2): 303-318.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-019-0562-x
https://academic.hep.com.cn/fme/EN/Y2020/V15/I2/303
Fig.1  TEM image of the Cu NPs used in the experimental work. The analyzed sample has an average diameter of (16.35±2.6) nm, and the capping monolayer thickness is approximately 5.33 nm.
Fig.2  Optical absorbance for the wavelengths of the tested lasers of Cu NPs printed on the PET flexible polymer film.
Fig.3  Optical properties of the PET polymer film: (a) Transmittance and reflectance; (b) absorbance. The wavelengths of the tested laser system are indicated for reference.
Fig.4  Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) of the investigated Cu NPs paste.
Fig.5  (a) Differential scanning calorimetry (DSC) analysis of PET film; (b) thermogravimetric analysis (TGA) of PET polymer film.
Fig.6  Scanning patterns used in the laser sintering of Cu NP paste by the Nd:YAG (SH) picosecond laser system.
Fig.7  Electrical resistance of Cu NPs sintered by Nd:YAG laser (l = 532 nm, t = 10 ps) under different (a) laser average power levels and (b) total linear traverse speeds.
Fig.8  Optical and SEM photographs of Cu NPs sintered by Nd:YAG (SH, l = 532 nm, t = 10 ps) laser with (a) cross and (b) angled scanning patterns.
Fig.9  EDX of dried and laser-sintered Cu NPs by Nd:YAG (SH, l = 532 nm, t = 10 ps) after (a) drying and (b) laser sintering.
Fig.10  (a) Optical and (b) SEM photographs of Cu NPs sintered by diode laser (l = 808 nm, cw) in single scanning pass.
Fig.11  (a) Optical and (b) SEM photographs of Cu NPs sintered by Nd:YAG laser (l = 1064 nm, t = 38 ns) with a single pass.
Fig.12  (a) Optical and (b) SEM photographs of Cu NPs sintered by Yb fiber laser (l = 1070 nm, t = 38 ns) following a single scanning pass.
Fig.13  Electrical resistance of Cu NPs sintered by different lasers with different wavelengths and pulse modes.
Wavelength/nm Electrical resistivity/(mW?cm) Spot size/mm Sintered line width/mm Sintered line thickness/µm Average power level/W Scanning speed/(m?min–1) Pulse duration/ns Laser fluence/(J?cm–2) Absorption coefficient a/(104 cmˉ1)* Average power density/(W?cm–2)
532 44.52 0.174 0.193 12.77 2.902 20.27 0.01 2.961 6.402 10841.00
808 50.45 0.514 0.498 12.65 8.000 13.80 cw 7.070 6.729 3855.44
1064 67.47 0.890 0.833 10.12 45.000 39.00 86.00 7.910 6.029 5779.29
1070 62.46 0.258 0.249 12.50 4.000 6.00 cw 15.500 5.967 7651.22
Tab.1  Key characteristics of Cu NPs screen printed on PET polymer substrate sintered by four industrial laser systems with different wavelengths and pulse durations. Applied process condition and calculated optical absorption at room temperature
Fig.14  Resistivity and laser fluence in optimal conditions for the laser sintering of Cu NPs at different wavelengths and pulse modes.
No. Focal spot Average power/W Spot diameter/cm Speed/(m?min–1) Laser fluence/(J?cm–2) Power density/(W?cm–2) Length of line/cm Interaction time/s Resistance/W Pattern
1 –3.0 2.310 0.01739 21.75 1.833 9729.10 1 0.0276 10.2 Angled
2 –3.0 2.145 0.01739 21.00 1.762 9034.17 1 0.0286 5.4 Angled
3 –3.0 2.970 0.01739 23.40 2.628 12508.85 1 0.0256 3.3 Angled
4 –3.0 2.937 0.01739 23.44 2.703 12369.86 1 0.0256 1.7 Angled
5 –3.0 2.970 0.01739 21.60 2.847 12508.85 1 0.0278 1.5 Angled
6 –3.0 2.937 0.01739 22.50 2.815 12369.86 1 0.0267 1.3 Angled
7 –3.0 2.904 0.01739 18.86 3.037 12230.87 1 0.0318 1.2 Angled
8 –3.0 2.904 0.01739 19.69 3.181 12230.87 1 0.0305 2.6 Angled
9 –3.0 2.904 0.01739 18.00 3.181 12230.87 1 0.0333 1.1 Angled
10 –3.0 2.838 0.01739 18.00 3.109 11952.90 1 0.0333 1.2 Angled
11 –3.0 2.640 0.01739 20.80 2.920 11118.97 1 0.0288 1.9 Angled
12 –3.0 2.904 0.01739 16.20 3.275 12230.87 1 0.0370 1.3 Angled
13 –3.0 2.904 0.01739 15.00 3.340 12230.87 1 0.0400 1.1 Angled
14 –3.0 2.805 0.01739 14.35 3.227 11813.91 1 0.0418 13.6 Angled
15 –3.0 2.640 0.01739 20.00 3.037 11118.97 1 0.0300 2.1 Angled
16 –3.0 2.574 0.01739 20.27 2.961 10841.00 1 0.0296 1.9 Angled
17 –3.0 2.838 0.01739 17.14 3.265 11952.90 1 0.0350 1.1 Angled
18 –2.5 2.442 0.01451 12.00 4.206 14760.45 1 0.0500 1.9 Angled
19 –2.0 1.914 0.01165 9.00 5.478 17965.17 1 0.0667 1.9 Angled
20 –2.0 1.254 0.01165 5.33 5.383 11770.28 1 0.1125 3.2 Angled
21 –2.0 1.089 0.01165 5.07 4.921 10221.56 1 0.1184 7.1 Angled
22 –2.0 1.089 0.01165 4.80 5.195 10221.56 1 0.1250 2.6 Angled
23 –2.0 1.089 0.01165 4.53 5.500 10221.56 1 0.1324 2.4 Angled
24 –2.0 0.726 0.01165 5.54 4.156 6814.38 1 0.1083 2.7 Angled
25 –3.0 2.508 0.01739 12.40 2.327 10563.03 1 0.0484 16.0 Cross
26 –3.0 2.498 0.01739 12.20 2.355 10521.33 1 0.0492 1.9 Cross
27 –3.0 2.482 0.01739 12.00 2.379 10451.84 1 0.0500 3.2 Cross
28 –3.0 2.482 0.01739 12.00 2.379 10453.52 1 0.0500 1.8 Cross
29 –3.0 0.759 0.01739 2.77 2.910 3196.71 1 0.2167 3.0 Cross
30 –3.0 0.759 0.01739 2.77 2.910 3196.71 1 0.2167 4.1 Cross
31 –2.0 1.056 0.01165 4.53 3.297 9911.82 1 0.1324 3.7 Cross
32 –2.0 1.089 0.01165 3.15 3.667 10221.56 1 0.1905 2.6 Cross
33 –2.0 1.056 0.01165 3.75 3.627 9911.82 1 0.1600 2.0 Cross
34 –2.0 1.056 0.01165 3.09 3.627 9911.82 1 0.1943 2.5 Cross
35 –2.0 1.089 0.01165 3.45 4.065 10221.56 1 0.1739 3.8 Cross
36 –2.0 1.056 0.01165 3.69 4.533 9911.82 1 0.1625 1.5 Cross
37 –2.0 0.990 0.01165 3.51 4.474 9292.33 1 0.1711 1.7 Cross
38 –2.0 0.924 0.01165 3.32 4.407 8672.84 1 0.1806 1.5 Cross
39 –2.0 0.858 0.01165 3.14 4.333 8053.35 1 0.1912 1.6 Cross
40 –2.0 0.825 0.01165 2.95 4.427 7743.61 1 0.2031 1.5 Cross
41 –2.0 0.792 0.01165 2.86 4.387 7433.86 1 0.2097 4.0 Cross
42 –2.0 0.759 0.01165 2.77 4.345 7124.12 1 0.2167 1.9 Cross
  Table A1 Process parameters investigated in the sintering by a Time Bandwidth Duetto Nd:YAG laser SH (l = 532 nm, t = 10 ps) of Cu NP ink printed on the PET polymer film
No. Focal spot Average power/W Spot diameter/cm Speed/(m?min–1) Laser fluence/(J?cm–2) Power density/(W?cm–2) Length of line/cm Interaction time/s Resistance/W
1 0 5 0.0514 2.67 22.36 2409.65 1 0.2247 0.70
2 0 8 0.0514 5.40 21.86 3855.44 1 0.1111 0.70
3 0 8 0.0514 6.00 17.29 3855.44 1 0.1000 0.70
4 0 8 0.0514 6.60 15.56 3855.44 1 0.0909 0.80
5 0 8 0.0514 7.20 14.15 3855.44 1 0.0833 0.70
6 0 8 0.0514 7.80 12.97 3855.44 1 0.0769 0.80
7 0 8 0.0514 8.40 11.97 3855.44 1 0.0714 0.70
8 0 8 0.0514 9.00 11.12 3855.44 1 0.0667 0.80
9 0 8 0.0514 9.60 10.38 3855.44 1 0.0625 0.70
10 0 8 0.0514 10.20 9.73 3855.44 1 0.0588 0.90
11 0 8 0.0514 10.80 9.16 3855.44 1 0.0556 0.70
12 0 8 0.0514 11.40 8.65 3855.44 1 0.0526 0.80
13 0 8 0.0514 12.00 8.19 3855.44 1 0.0500 0.75
14 0 8 0.0514 12.60 7.78 3855.44 1 0.0476 0.80
15 0 8 0.0514 13.20 7.41 3855.44 1 0.0455 0.70
16 0 8 0.0514 13.80 7.07 3855.44 1 0.0435 0.80
17 0 8 0.0514 16.20 6.77 3855.44 1 0.0370 0.80
18 0 10 0.0514 16.20 5.76 4819.30 1 0.1149 0.70
19 0 10 0.0514 5.22 22.36 4819.30 1 0.1000 0.60
20 0 10 0.0514 6.00 19.46 4819.30 1 0.0909 0.60
21 0 10 0.0514 6.60 17.69 4819.30 1 0.0833 0.60
22 0 10 0.0514 7.20 16.21 4819.30 1 0.0769 0.60
23 0 10 0.0514 7.80 14.97 4819.30 1 0.0714 0.60
24 0 14 0.0514 8.40 13.90 6747.02 1 0.0690 0.70
25 0 15 0.0514 8.70 18.78 7228.95 1 0.0730 NC
26 0 17 0.0514 8.22 21.30 8192.81 1 0.0526 1.20
  Table A2 Process parameters investigated in the sintering by a coherent FAP diode laser (808 nm) of Cu NP ink printed on the PET polymer film
No. Focal spot Average power/W Spot diameter/cm Speed/(m?min–1) Laser fluence/(J?cm–2) Power density/(W?cm–2) Length of line/cm Interaction time/s Resistance/W
1 –6 44.67 0.0897 36.0 8.36 5639.02 1 0.017 3.00
2 –6 45.11 0.0890 30.0 10.14 5695.13 1 0.020 0.85
3 –6 45.33 0.0890 33.0 9.26 5723.18 1 0.018 0.60
4 –6 45.78 0.0890 39.0 7.91 5779.29 1 0.015 0.80
5 –6 47.62 0.0890 42.0 7.64 6011.45 1 0.014 2.60
6 –6 49.16 0.0890 42.0 7.89 6205.73 1 0.014 8.50
7 –6 49.68 0.0890 42.0 7.97 6271.65 1 0.014 1.10
8 –6 49.68 0.0890 42.0 7.97 6271.65 1 0.014 2.60
9 –6 53.20 0.0890 42.0 8.54 6716.32 1 0.014 2.35
10 –6 56.57 0.0890 42.0 9.08 7141.35 1 0.014 5.60
11 0 44.44 0.0600 31.2 14.25 12345.68 1 0.019 2.00
12 0 44.67 0.0600 36.0 12.41 12407.41 1 0.017 3.50
13 0 44.67 0.0600 36.0 12.41 12407.41 1 0.017 11.80
14 0 44.89 0.0600 34.2 13.13 12469.14 1 0.018 11.20
15 0 44.89 0.0600 33.0 13.60 12469.14 1 0.018 1.20
16 0 44.89 0.0600 33.0 13.60 12469.14 1 0.018 0.65
17 0 45.11 0.0600 42.0 10.74 12530.86 1 0.014 17.50
18 0 45.33 0.0600 36.0 12.59 12592.59 1 0.017 0.60
19 0 46.00 0.0600 42.0 10.95 12777.78 1 0.014 8.10
20 0 54.40 0.0600 60.0 9.07 15111.11 1 0.010 17.50
  Table A3 Process parameters investigated in the sintering by a ROFIN DQ x50S Nd:YAG laser (l = 1064 nm, t = 38 ns) of Cu NP ink printed on the PET polymer film
No. Focal spot Average power/W Spot diameter/cm Speed/(m?min–1) Laser fluence/(J?cm–2) Power density/(W?cm–2) Length of line/cm Interaction time/s Resistance/W
1 +2.15 4.0 0.0258 4.8 19.38 7651.22 1 0.1250 0.7
2 +2.15 4.0 0.0258 4.8 19.38 7651.22 1 0.1250 1.6
3 +2.15 4.0 0.0258 6.0 15.50 7651.22 1 0.1000 0.7
4 +2.15 4.0 0.0258 6.0 15.50 7651.22 1 0.1000 2.0
5 +2.15 4.0 0.0258 7.2 12.92 7651.22 1 0.0833 0.7
6 +2.15 4.5 0.0258 4.2 24.92 8607.62 1 0.1429 0.7
7 +2.15 4.5 0.0258 5.4 19.38 8607.62 1 0.1111 0.7
8 +2.15 4.5 0.0258 6.6 15.86 8607.62 1 0.0909 0.7
9 +2.64 6.0 0.0317 6.0 18.93 7602.26 1 0.1000 0.8
10 +2.64 7.0 0.0317 6.0 22.08 8869.31 1 0.1000 0.8
11 +2.64 10.0 0.0317 12.0 15.77 12670.44 1 0.0500 1.0
12 +2.64 12.0 0.0317 15.0 15.14 15204.52 1 0.0400 1.0
13 +4.49 12.0 0.0539 9.6 13.91 5259.13 1 0.0625 0.8
14 +4.49 12.0 0.0539 10.8 12.37 5259.13 1 0.0556 1.0
15 +4.49 14.0 0.0539 10.8 14.43 6135.65 1 0.0556 0.8
16 +4.49 14.0 0.0539 12.0 12.99 6135.65 1 0.0500 1.0
17 +4.49 14.0 0.0539 14.4 10.82 6135.65 1 0.0417 1.0
18 +5.08 14.0 0.0609 12.0 11.49 4806.22 1 0.0500 1.0
19 +5.08 16.0 0.0609 10.8 14.60 5492.82 1 0.0556 0.8
20 +5.08 16.0 0.0609 13.2 11.94 5492.82 1 0.0455 1.0
21 +5.61 16.0 0.0609 10.8 14.60 5492.82 1 0.0556 1.0
22 +5.61 16.0 0.0609 12.0 13.14 5492.82 1 0.0500 1.0
23 +5.61 16.0 0.0609 13.2 11.94 5492.82 1 0.0455 1.0
24 +5.61 18.0 0.0609 12.0 14.78 6179.42 1 0.0500 1.0
  Table A4 Process parameters investigated in the sintering by SPI ytterbium laser (l = 1070 nm, cw) of Cu NP ink printed on the PET film
1 S H Ko, H Pan, C P Grigoropoulos, et al. All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles. Nanotechnology, 2007, 18(34): 345202
https://doi.org/10.1088/0957-4484/18/34/345202
2 P Buffat, J P Borel. Size effect on the melting temperature of gold particles. Physical Review A, 1976, 13(6): 2287–2298
https://doi.org/10.1103/PhysRevA.13.2287
3 N R Bieri, J Chung, S E Haferl, et al.Microstructuring by printing and laser curing of nanoparticle solutions. Applied Physics Letters, 2003, 82(20): 3529–3531
https://doi.org/10.1063/1.1575502
4 T Y Kim, J Y Hwang, S J. MoonLaser curing of the silver/copper nanoparticle ink via optical property measurement and calculation.Japanese Journal of Applied Physics, 2010, 49(5S1): 05EA09(1-6)
5 N R Bieri, J Chung, D Poulikakos, et al.An experimental investigation of microresistor laser printing with gold nanoparticle-laden inks. Applied Physics A, 2005, 80(7): 1485–1495
https://doi.org/10.1007/s00339-004-3195-8
6 M K Kim, H Kang, K Kang, et al.. Laser sintering of inkjet-printed silver nanoparticles on glass and PET substrates. In: Proceedings of the 10th IEEE International Conference on Nanotechnology. Seoul: IEEE, 2010
https://doi.org/10.1109/NANO.2010.5697913
7 J Chung, N R Bieri, S Ko, et al.In-tandem deposition and sintering of printed gold nanoparticle inks induced by continuous Gaussian laser irradiation. Applied Physics A, 2004, 79(4–6): 1259–1261
https://doi.org/10.1007/s00339-004-2731-x
8 S H Ko, H Pan, C P Grigoropoulos, et al.Air stable high resolution organic transistors by selective laser sintering of ink-jet printed metal nanoparticles. Applied Physics Letters, 2007, 90(14): 141103–141105
https://doi.org/10.1063/1.2719162
9 N R Bieri, J Chung, D Poulikakos, et al. Manufacturing of nanoscale thickness gold lines by laser curing of a discretely deposited nanoparticle suspension. Superlattices and Microstructures, 2004, 35(3–6): 437–444
https://doi.org/10.1016/j.spmi.2003.09.006
10 T Y Choi, D Poulikakos, C P Grigoropoulos. Fountain-pen-based laser microstructuring with gold nanoparticle inks. Applied Physics Letters, 2004, 85(1): 13–15
https://doi.org/10.1063/1.1767281
11 J Chung, S Ko, N R Bieri, et al.Conductor microstructures by laser curing of printed gold nanoparticle ink. Applied Physics Letters, 2004, 84(5): 801–803
https://doi.org/10.1063/1.1644907
12 S H Ko, J Chung, H Pan, et al.Fabrication of multilayer passive and active electric components on polymer using inkjet printing and low temperature laser processing. Sensors and Actuators A: Physical, 2007, 134(1): 161–168
https://doi.org/10.1016/j.sna.2006.04.036
13 S H Ko, Pan K, Hwang D J, et al.. High resolution selective multilayer laser processing by nanosecond laser ablation of metal nanoparticle films. Journal of Applied Physics, 2007, 102: 093102
https://doi.org/10.1063/1.2802302
14 H Alemohammad, O Aminfar, E Toyserkani. Morphology and microstructure analysis of nano-silver thin films deposited by laser-assisted maskless microdeposition. Journal of Micromechanics and Microengineering, 2008, 18(11): 115015
https://doi.org/10.1088/0960-1317/18/11/115015
15 T Kumpulainen, J Pekkanen. Utilization of 515 nm pulsed fiber laser for low temperature nanoparticle sintering. In: Proceedings of the 27th International Congress on Applications of Lasers & Electro-Optics. Temecula: Laser Institute of America, 2008
https://doi.org/10.2351/1.5061351
16 Y Son, T W Lim, J Yeo, et al.. Fabrication of nano-scale conductors by selective femtosecond laser sintering of metal nanoparticles. In: Proceedings of the 10th IEEE International Conference on Nanotechnology. Seoul: IEEE, 2010
https://doi.org/10.1109/NANO.2010.5697903
17 T Kumpulainen, J Pekkanen, J Valkama, et al.Low temperature nanoparticle sintering with continuous wave and pulse lasers. Optics & Laser Technology, 2011, 43(3): 570–576
https://doi.org/10.1016/j.optlastec.2010.08.002
18 R Lesyuk, W Jillek, Y Bobitski, et al.Low-energy pulsed laser treatment of silver nanoparticles for interconnects fabrication by ink-jet method. Microelectronic Engineering, 2011, 88(3): 318–321
https://doi.org/10.1016/j.mee.2010.11.037
19 T Niizeki, K Maekawa, M Mita, et al.. Laser sintering of Ag nanopaste film and its application to bond-pad formation. In: Proceedings of the 58th Electronic Components and Technology Conference. Lake Buena Vista: IEEE, 2008, 1745–1750
https://doi.org/10.1109/ECTC.2008.4550216
20 M K Kim, J Y Hwang, H Kang, et al.. Laser sintering of the printed silver ink. In: Proceedings of the 2009 IEEE International Symposium on Assembly and Manufacturing. Suwon: IEEE, 2009, 155–158
https://doi.org/10.1109/ISAM.2009.5376912
21 P Laakso, S Ruotsalainen, E Halonen, et al.. Sintering of printed nanoparticle structures using laser treatment. In: Proceedings of the 28th International Congress on Applications of Lasers & Electro-Optics. Orlando, 2009
22 M Aminuzzaman, A Watanabe, T Miyashita. Direct writing of conductive silver micropatterns on flexible polyimide film by laser-induced pyrolysis of silver nanoparticle-dispersed film. Journal of Nanoparticle Research, 2010, 12(3): 931–938
https://doi.org/10.1007/s11051-009-9643-9
23 Y Tsutsui, K Yamasaki, K Maekawa, et al.. Size effect of Ag nanoparticles on laser sintering and wire bondability. In: Proceedings of the 60th Electronic Components and Technology Conference (ECTC 2010). Las Vegas: IEEE, 2010, 1870–1876
https://doi.org/10.1109/ECTC.2010.5490705
24 Y H Yoon, S M Yi, J R Yim, et al.Microstructure and electrical properties of high power laser thermal annealing on inkjet-printed Ag films. Microelectronic Engineering, 2010, 87(11): 2230–2233
https://doi.org/10.1016/j.mee.2010.02.008
25 B Kang, J Kno, M Yang. High-resolution and high-conductive electrode fabrication on a low thermal resistance flexible substrate. Journal of Micromechanics and Microengineering, 2011, 21(7): 075017
https://doi.org/10.1088/0960-1317/21/7/075017
26 B Kang, S Ko, J Kim, et al.Microelectrode fabrication by laser direct curing of tiny nanoparticle self-generated from organometallic ink. Optics Express, 2011, 19(3): 2573–2579
https://doi.org/10.1364/OE.19.002573
27 M G Kim, M G Kanatzidis, A Facchetti, et al.Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nature Materials, 2011, 10(5): 382–388
https://doi.org/10.1038/nmat3011
28 D G Lee, D K Kim, Y J Moon, et al.Effect of temperature on electrical conductance of inkjet-printed silver nanoparticle ink during continuous wave laser sintering. Thin Solid Films, 2013, 546: 443–447
https://doi.org/10.1016/j.tsf.2013.05.103
29 J Niittynen, R Abbel, M Mäntysalo, et al.Alternative sintering methods compared to conventional thermal sintering for inkjet printed silver nanoparticle ink. Thin Solid Films, 2014, 556: 452–459
https://doi.org/10.1016/j.tsf.2014.02.001
30 G Qin, A Watanabe. Conductive network structure formed by laser sintering of silver nanoparticles. Journal of Nanoparticle Research, 2014, 16(11): 2684
https://doi.org/10.1007/s11051-014-2684-8
31 K C Yung, T S Plura. Selective laser processing of ink-jet printed nano-scaled tin-clad copper particles. Applied Physics A, 2010, 101(2): 393–397
https://doi.org/10.1007/s00339-010-5867-x
32 M Joo, B Lee, S Jeong, et al.Comparative studies on thermal and laser sintering for highly conductive Cu films printable on plastic substrate. Thin Solid Films, 2012, 520(7): 2878–2883
https://doi.org/10.1016/j.tsf.2011.11.078
33 J Lee, B Lee, S Jeong, et al.Microstructure and electrical property of laser-sintered Cu complex ink. Applied Surface Science, 2014, 307: 42–45
https://doi.org/10.1016/j.apsusc.2014.03.127
34 J Lee, B Lee, S Jeong, et al.Enhanced surface coverage and conductivity of Cu complex ink-coated films by laser sintering. Thin Solid Films, 2014, 564: 264–268
https://doi.org/10.1016/j.tsf.2014.06.005
35 J H Yu, K T Kang, J Y Hwang, et al.Rapid sintering of copper nano ink using a laser in air. International Journal of Precision Engineering and Manufacturing, 2014, 15(6): 1051–1054
https://doi.org/10.1007/s12541-014-0435-5
36 Intrinsiq Materials. Screen print copper paste for PV metalisation. Available at Intrinsiq Materials website on September 15, 2019
37 A Soltani, B Khorramdel Vahed, A Mardoukhi, et al.Laser sintering of copper nanoparticles on top of silicon substrates. Nanotechnology, 2016, 27(3): 035203
https://doi.org/10.1088/0957-4484/27/3/035203
38 J Kwon, H Cho, H Eom, et al.Low-temperature oxidation-free selective laser sintering of Cu nanoparticle paste on a polymer substrate for the flexible touch panel applications. ACS Applied Materials & Interfaces, 2016, 8(18): 11575–11582
https://doi.org/10.1021/acsami.5b12714
39 C W Cheng, J K Chen. Femtosecond laser sintering of copper nanoparticles. Applied Physics A, 2016, 122(4): 289
https://doi.org/10.1007/s00339-016-9814-3
40 N K Roy, O G Dibua, W Jou, et al.A comprehensive study of the sintering of copper nanoparticles using femtosecond, nanosecond, and continuous wave lasers. Journal of Micro and Nano-Manufacturing, 2017, 6(1): 010903
https://doi.org/10.1115/1.4038455
41 N K Roy, O G Dibua, C S Foong, et al.Preliminary results on the fabrication of interconnect structures using microscale selective laser sintering. In: Proceedings of ASME 2017 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. San Francisco: ASME, 2017, IPACK2017-74173, V001T01A001
https://doi.org/10.1115/IPACK2017-74173
42 N K Roy, W Jou, H Feng, et al.Laser sintering of copper nanoparticles: A simplified model for fluence estimation and validation. In: Proceedings of the 12th International Manufacturing Science and Engineering Conference. Los Angeles: ASME, 2017, MSEC2017-2975, V002T01A032
https://doi.org/10.1115/MSEC2017-2975
43 R H Perry. Perry’s Chemical Engineers’ Handbook. 7th ed. New York: McGraw-Hill, 1997
44 I Shyjumon, M Gopinadhan, O Ivanova, et al.Structural deformation, melting point and lattice parameter studies of size selected silver clusters. European Physical Journal D, 2006, 37(3): 409–415
https://doi.org/10.1140/epjd/e2005-00319-x
45 Y Son, J Yeo, H Moon, et al.Nanoscale electronics: Digital fabrication by direct femtosecond laser processing of metal nanoparticles. Advanced Materials, 2011, 23(28): 3176–3181
https://doi.org/10.1002/adma.201100717
46 Y Lawrence Yao, H Chen, W Zhang. Time scale effects in laser material removal: A review. International Journal of Advanced Manufacturing Technology, 2005, 26(5–6): 598–608
https://doi.org/10.1007/s00170-003-2026-y
47 M Hu, G V Hartland. Heat dissipation for Au particles in aqueous solution: Relaxation time versus size. Journal of Physical Chemistry B, 2002, 106(28): 7029–7033
https://doi.org/10.1021/jp020581+
48 J S Kang, H S Kim, J Ryu, et al.Inkjet printed electronics using copper nanoparticle ink. Journal of Materials Science Materials in Electronics, 2010, 21(11): 1213–1220
https://doi.org/10.1007/s10854-009-0049-3
49 W A MacDonald. Engineered films for display technologies. Journal of Materials Chemistry, 2004, 14(1): 4–10
https://doi.org/10.1039/b310846p
50 D Bäuerle. Laser Processing and Chemistry. Berlin: Springer, 2011, 739–781
51 H Min, B Lee, S Jeong, et al.Laser-direct process of Cu nano-ink to coat highly conductive and adhesive metallization patterns on plastic substrate. Optics and Lasers in Engineering, 2016, 80: 12–16
https://doi.org/10.1016/j.optlaseng.2015.12.007
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed