Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2020, Vol. 15 Issue (3) : 406-416    https://doi.org/10.1007/s11465-019-0578-2
RESEARCH ARTICLE
Multidisciplinary co-design optimization of structural and control parameters for bucket wheel reclaimer
Yongliang YUAN, Liye LV, Shuo WANG, Xueguan SONG()
School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
 Download: PDF(1136 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Bucket wheel reclaimer (BWR) is an extremely complex engineering machine that involves multiple disciplines, such as structure, dynamics, and electromechanics. The conventional design strategy, namely, sequential strategy, is structural design followed by control optimization. However, the global optimal solution is difficult to achieve because of the discoordination of structural and control parameters. The co-design strategy is explored to address the aforementioned problem by combining the structural and control system design based on simultaneous dynamic optimization approach. The radial basis function model is applied for the planning of the rotation speed considering the relationships of subsystems to minimize the energy consumption per volume. Co-design strategy is implemented to resolve the optimization problem, and numerical results are compared with those of sequential strategy. The dynamic response of the BWR is also analyzed with different optimization strategies to evaluate the advantages of the strategies. Results indicate that co-design strategy not only can reduce the energy consumption of the BWR but also can achieve a smaller vibration amplitude than the sequential strategy.

Keywords bucket wheel reclaimer      co-design      energy-minimum optimization      sequential strategy     
Corresponding Author(s): Xueguan SONG   
Just Accepted Date: 17 February 2020   Online First Date: 11 March 2020    Issue Date: 03 September 2020
 Cite this article:   
Yongliang YUAN,Liye LV,Shuo WANG, et al. Multidisciplinary co-design optimization of structural and control parameters for bucket wheel reclaimer[J]. Front. Mech. Eng., 2020, 15(3): 406-416.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-019-0578-2
https://academic.hep.com.cn/fme/EN/Y2020/V15/I3/406
Fig.1  Whole structure of the bucket wheel reclaimer.
Fig.2  Excavation technology of the bucket wheel reclaimer: (a) Hierarchical and (b) fixed-point operations.
Fig.3  (a) Schematic of bucket wheel reclaimer; (b) excavation trajectory.
Basis function Φ(x)
Multi-quadrics ( x2+δ2)1/2, δ0,
Inverse multi-quadrics ( x2+δ2) 1/2, δ0
Gaussian e x2/δ 2, δ 0
Tab.1  Choices of Φ for the interpolation matrix
Fig.4  Typical speed curve of the motor.
Fig.5  Configuration of the bucket wheel reclaimer.
Fig.6  Resistance analysis of the bucket wheel reclaimer.
Fig.7  Characteristic curve of the motor.
Interpolation point Mean value/(kJ·kg−1) Best value/(kJ·kg−1) Worst value/(kJ·kg−1) Standard deviation/(kJ·kg−1)
6 34.80 34.46 41.29 43.90
8 33.79 33.51 39.46 41.31
10 36.03 35.18 43.45 46.97
12 1.13 0.84 2.00 2.84
Tab.2  The influence of the different interpolation points on energy consumption
Fig.8  Convergence histories of the different interpolation points on energy consumption.
Fig.9  Convergence histories of co-design strategy and sequential strategy for the bucket wheel reclaimer.
Design variable Initial value Sequential strategy Co-design strategy
Optimal value Improved/% Optimal value Improved/%
x1 3.50 m 4.19 m +19.71 4.20 m +20.00
x2 3.50 m 2.64 m ?24.57 3.53 m +0.83
x3 3.50 m 2.79 m ?20.29 2.56 m ?26.81
x4 5.60 m 5.33 m ?4.82 5.50 m ?1.87
x5 3.00 m 4.20 m +40.00 4.19 m +39.67
x6 6.00 m 2.75 m ?8.33 5.62 m ?6.26
x7 3.00 m 2.90 m ?3.33 3.29 m +9.70
x8 6.00 m 2.84 m ?5.33 5.61 m ?6.53
x9 3.00 m 2.80 m ?6.67 2.97 m ?1.13
x10 6.00 m 2.84 m ?5.33 5.23 m ?12.86
x11 1.079×10−2 m2 1.19×10−2 m2 +10.28 1.29×10−2 m2 +19.49
x12 3.50×10−2 m2 4.46×10−2 m2 +27.60 2.77×10−2 m2 ?20.71
x13 2.83×10−3 m2 3.12×10−3 m2 +10.35 2.84×10−3 m2 +0.37
x14 4.92×10−2 m2 5.07×10−2 m2 +3.29 5.25×10−2 m2 +6.95
x15 1.08×10−2 m2 1.35×10−2 m2 +25.11 1.17×10−2 m2 +8.58
x16 7.78 m 8.85 m +13.75 8.89 m +14.25
x17 4.80 m 5.16 m +7.50 4.52 m ?5.80
x18 1.08×10−2 m2 1.21×10−2 m2 +11.95 1.36×10−2 m2 +25.87
x19 4.37 m 3.74 m ?14.42 3.66 m ?16.25
x20 3.00 m 4.34 m +44.67 2.17 m ?27.56
x21 4.29×10−3 m2 5.02×10−3 m2 +16.94 5.65×10−3 m2 +31.71
x22 3.77 m 3.19 m ?15.38 3.72 m ?1.22
x23 8.50×10−3 m2 1.12×10−3 m2 +31.85 6.98×10−3 m2 ?17.79
x24 70.00° 61.42° ?12.26 57.79° ?17.44
x25 9.00° 7.78° ?13.56 7.78° ?13.56
x26 26.00° 19.86° ?23.62 20.96° ?19.39
x27 9.00° 7.15° ?20.56 7.20° ?20.00
v1 3.00×10−2 rad/s 2.72×10−2 rad/s ?9.47 2.61×10−2 rad/s ?13.10
v2 4.00×10−2 rad/s 3.83×10−2 rad/s ?4.24 4.26×10−2 rad/s +6.52
v3 6.50×10−2 rad/s 7.96×10−2 rad/s +22.51 5.90×10−2 rad/s ?9.29
v4 8.00×10−2 rad/s 7.05×10−2 rad/s ?11.86 7.58×10−2 rad/s ?5.27
v5 5.80×10−2 rad/s 4.92×10−2 rad/s ?15.09 4.88×10−2 rad/s ?15.87
v6 7.50×10−2 rad/s 6.48×10−2 rad/s ?13.58 7.88×10−2 rad/s +5.00
v7 6.30×10−2 rad/s 6.19×10−2 rad/s ?1.75 5.07×10−2 rad/s ?19.56
v8 5.00×10−2 rad/s 4.05×10−2 rad/s ?19.04 3.84×10−2 rad/s ?23.24
Best value 79.45 kJ/kg 61.86 kJ/kg ?22.14 57.72 kJ/kg ?27.31
Worst value ? 67.59 kJ/kg ?14.93 63.90 kJ/kg ?19.57
Mean value ? 64.71 kJ/kg ?18.55 60.71 kJ/kg ?23.59
Standard deviation ? 2.14 kJ/kg 1.93 1.95 kJ/kg 1.92
Tab.3  Optimization results of co-design strategy and sequential strategy for the bucket wheel reclaimer
Fig.10  Speed and power of the motor with co-design strategy: (a) Control speed and (b) output power of the rotation motor.
Fig.11  Dynamic response of the bucket wheel reclaimer with different optimization strategies.
1 S M Bošnjak, M A Arsić, N Đ Zrnić, et al. Bucket wheel excavator: Integrity assessment of the bucket wheel boom tie-rod welded joint. Engineering Failure Analysis, 2011, 18(1): 212–222
https://doi.org/10.1016/j.engfailanal.2010.09.001
2 A Chatterjee, D Das. A review of bucket wheel reclaimer failure through mechanical test and metallographic analysis. Journal of Failure Analysis and Prevention, 2014, 14(6): 715–721
https://doi.org/10.1007/s11668-014-9898-z
3 S Bošnjak, M Pantelić, N Zrnić, et al. Failure analysis and reconstruction design of the slewing platform mantle of the bucket wheel excavator O&K SchRs 630. Engineering Failure Analysis, 2011, 18(2): 658–669
https://doi.org/10.1016/j.engfailanal.2010.09.035
4 T F Lu. Preparation for turning a bucket wheel reclaimer into a robotic arm. In: Proceedings of the International Conference on Robotics and Biomimetics. Bangkok: IEEE, 2008, 1710–1715
https://doi.org/10.1109/ROBIO.2009.4913259
5 T F Lu. Bucket wheel reclaimer modeling as a robotic arm. In: Proceedings of the International Conference on Robotics and Biomimetics. Guilin: IEEE, 2009, 263–268
6 S Zhao, T F Lu, B Koch, et al. A simulation study of sensor data fusion using UKF for bucket wheel reclaimer localization. In: Proceedings of the IEEE International Conference on Automation Science and Engineering (CASE). Seoul: IEEE, 2012, 1192–1197
https://doi.org/10.1109/CoASE.2012.6386509
7 L Yang, J Qi, S Li, et al. Collaborative optimization for train scheduling and train stop planning on high-speed railways. Omega, 2016, 64: 57–76
https://doi.org/10.1016/j.omega.2015.11.003
8 Y L Yuan, X G Song, W Sun, et al. Multidisciplinary design optimization of the belt drive system considering both structure and vibration characteristics based on improved genetic algorithm. AIP Advances, 2018, 8(5): 055115
https://doi.org/10.1063/1.5026302
9 W Li, P Wang, D Li, et al. Multiphysical field collaborative optimization of premium induction motor based on GA. IEEE Transactions on Industrial Electronics, 2018, 65(2): 1704–1710
https://doi.org/10.1109/TIE.2017.2752120
10 T Zhao, D Liu, Q Chen. A collaborative optimization method for heat transfer systems based on the heat current method and entransy dissipation extremum principle. Applied Thermal Engineering, 2019, 146: 635–647
https://doi.org/10.1016/j.applthermaleng.2018.10.016
11 W, Sun X B Wang, L T Wang, et al. Multidisciplinary design optimization of tunnel boring machine considering both structure and control parameters under complex geological conditions. Structural and Multidisciplinary Optimization, 2016, 54(4): 1073–1092
https://doi.org/10.1007/s00158-016-1455-9
12 W Sun, X B Wang, M L Shi, et al. Multidisciplinary design optimization of hard rock tunnel boring machine using collaborative optimization. Advances in Mechanical Engineering, 2018, 10(1): 1687814018754726
https://doi.org/10.1177/1687814018754726
13 Z L Huang, Y S Zhou, C Jiang, et al. Reliability-based multidisciplinary design optimization using incremental shifting vector strategy and its application in electronic product design. Acta Mechanica Sinica, 2018, 34(2): 285–302
https://doi.org/10.1007/s10409-017-0702-7
14 M Bidoki, M Mortazavi, M Sabzehparvar. A new approach in system and tactic design optimization of an autonomous underwater vehicle by using multidisciplinary design optimization. Ocean Engineering, 2018, 147: 517–530
https://doi.org/10.1016/j.oceaneng.2017.10.050
15 D Garg, M A Patterson, C Francolin, et al. Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems using a Radau pseudospectral method. Computational Optimization and Applications, 2011, 49(2): 335–358
https://doi.org/10.1007/s10589-009-9291-0
16 L Janson, E Schmerling, M Pavone. Monte Carlo motion planning for robot trajectory optimization under uncertainty. In: Bicchi A, Burgard W, eds. Robotics Research. Cham: Springer, 2018, 343–361
https://doi.org/10.1007/978-3-319-60916-4_20
17 X B Wang, W Sun, E Y Li, et al. Energy-minimum optimization of the intelligent excavating process for large cable shovel through trajectory planning. Structural and Multidisciplinary Optimization, 2018, 58(5): 2219–2237
https://doi.org/10.1007/s00158-018-2011-6
18 L Tian, C Collins. An effective robot trajectory planning method using a genetic algorithm. Mechatronics, 2004, 14(5): 455–470
https://doi.org/10.1016/j.mechatronics.2003.10.001
19 R Franke. Scattered data interpolation: Tests of some methods. Mathematics of Computation, 1982, 38(157): 181–200
https://doi.org/10.1090/S0025-5718-1982-0637296-4
20 S Rippa. An algorithm for selecting a good value for the parameter c in radial basis function interpolation. Advances in Computational Mathematics, 1999, 11(2–3): 193–210
https://doi.org/10.1023/A:1018975909870
21 Z Wu, R Schaback. Local error estimates for radial basis function interpolation of scattered data. IMA Journal of Numerical Analysis, 1993, 13(1): 13–27
https://doi.org/10.1093/imanum/13.1.13
22 E J He. Cantilever wheel arm gyral machine for heaping and taking the material 1/cosϕ speed control system. The World of Inverters, 2006, 10(5): 106–107 (in Chinese)
23 V Y Chudnovskii. Vertical oscillations of the working unit of a bucket-wheel excavator in a pit face and their suppression. Journal of Machinery Manufacture and Reliability, 2008, 37(3): 221–227
https://doi.org/10.3103/S1052618808030035
24 D H Wolpert, W G Macready. No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 67–82
https://doi.org/10.1109/4235.585893
25 Y L Yuan, L Y Lv, X B Wang, et al. Optimization of a frame structure using the Coulomb force search strategy-based dragonfly algorithm. Engineering Optimization, 2020, 52(6): 915–931
https://doi.org/10.1080/0305215X.2019.1618290
[1] A. Galip ULSOY. Smart product design for automotive systems[J]. Front. Mech. Eng., 2019, 14(1): 102-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed