Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2020, Vol. 15 Issue (4) : 547-557    https://doi.org/10.1007/s11465-020-0595-1
RESEARCH ARTICLE
Improvement of impact resistance of plain-woven composite by embedding superelastic shape memory alloy wires
Xiaojun GU1,2, Xiuzhong SU2, Jun WANG1,2(), Yingjie XU2,3(), Jihong ZHU2,3, Weihong ZHANG2
1. Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an 710072, China
2. State IJR Center of Aerospace Design and Additive Manufacturing, Northwestern Polytechnical University, Xi’an 710072, China
3. Shaanxi Engineering Laboratory of Aerospace Structure Design and Application, Northwestern Polytechnical University, Xi’an 710072, China
 Download: PDF(1533 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Carbon fiber reinforced polymer (CFRP) composites have excellent mechanical properties, specifically, high specific stiffness and strength. However, most CFRP composites exhibit poor impact resistance. To overcome this limitation, this study presents a new plain-woven CFRP composite embedded with superelastic shape memory alloy (SMA) wires. Composite specimens are fabricated using the vacuum-assisted resin injection method. Drop-weight impact tests are conducted on composite specimens with and without SMA wires to evaluate the improvement of impact resistance. The material models of the CFRP composite and superelastic SMA wire are introduced and implemented into a finite element (FE) software by the explicit user-defined material subroutine. FE simulations of the drop-weight impact tests are performed to reveal the superelastic deformation and debonding failure of the SMA inserts. Improvement of the energy absorption capacity and toughness of the SMA-CFRP composite is confirmed by the comparison results.

Keywords carbon fiber reinforced polymer composite      shape memory alloy wire      impact resistance      drop-weight test      finite element simulation     
Corresponding Author(s): Jun WANG,Yingjie XU   
Just Accepted Date: 03 September 2020   Online First Date: 25 September 2020    Issue Date: 02 December 2020
 Cite this article:   
Xiaojun GU,Xiuzhong SU,Jun WANG, et al. Improvement of impact resistance of plain-woven composite by embedding superelastic shape memory alloy wires[J]. Front. Mech. Eng., 2020, 15(4): 547-557.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-020-0595-1
https://academic.hep.com.cn/fme/EN/Y2020/V15/I4/547
Fig.1  SMA-embedded CFRP composite specimens.
Fig.2  Photograph and schematic representation of the drop-weight impact system.
Fig.3  Photographs of the specimens after drop-weight impact tests for impact energies of 10 and 30 J.
Fig.4  Finite element model of drop-weight impact test.
Unit volume force/(N? m3) Separation distance/( 10 6mm) Unit length force/(N ?m1)
Kn Ks Kt δn max δs max δt max Gn C Gs C Gt C
500 310 310 1.5 11 11 0.42 0.42 0.42
Tab.1  Parameters of cohesion-based damage criterion obtained from Yang et al. [32]
Fig.5  Simulation results of drop-weight impact tests for impact energies of 10 and 30 J.
Fig.6  Comparisons between experimental photographs and simulation results: Deformation and damage on the CFRP and SMA-CFRP composite specimens for the impact energy of 30 J.
Fig.7  Impact forces of CFRP and SMA-CFRP composite specimens for impact energies of (a) 10 and (b) 30 J. EXP: Experimental; SIM: Simulation.
Fig.8  Impact force?displacement curves of CFRP and SMA-CFRP composite specimens for impact energies of (a) 10 and (b) 30 J. EXP: Experimental; SIM: Simulation.
1 A Yoshimura, T Nakao, S Yashiro, et al. Improvement on out-of-plane impact resistance of CFRP laminates due to through-the-thickness stitching. Composites. Part A, Applied Science and Manufacturing, 2008, 39(9): 1370–1379
https://doi.org/10.1016/j.compositesa.2008.04.019
2 N Takagaki, K Okubo, T Fujii. Improvement of fatigue strength and impact properties of plain-woven CFRP modified with micro fibrillated cellulose. Advanced Materials Research, 2008, 47–50: 133–136
https://doi.org/10.4028/www.scientific.net/AMR.47-50.133
3 L G Blok, J Kratz, D Lukaszewicz, et al. Improvement of the in-plane crushing response of CFRP sandwich panels by through-thickness reinforcements. Composite Structures, 2017, 161: 15–22
https://doi.org/10.1016/j.compstruct.2016.11.034
4 W J Cantwell, J Morton. The impact resistance of composite materials—A review. Composites, 1991, 22(5): 347–362
https://doi.org/10.1016/0010-4361(91)90549-V
5 M O W Richardson, M J Wisheart. Review of low-velocity impact properties of composite materials. Composites. Part A, Applied Science and Manufacturing, 1996, 27(12): 1123–1131
https://doi.org/10.1016/1359-835X(96)00074-7
6 S Agrawal, K K Singh, P K Sarkar. Impact damage on fibre-reinforced polymer matrix composite—A review. Journal of Composite Materials, 2014, 48(3): 317–332
https://doi.org/10.1177/0021998312472217
7 M Sayer, N B Bektaş, O Sayman. An experimental investigation on the impact behavior of hybrid composite plates. Composite Structures, 2010, 92(5): 1256–1262
https://doi.org/10.1016/j.compstruct.2009.10.036
8 F J Yang, W J Cantwell. Impact damage initiation in composite materials. Composites Science and Technology, 2010, 70(2): 336–342
https://doi.org/10.1016/j.compscitech.2009.11.004
9 U Polimeno, M Meo, D P Almond, et al. Detecting low velocity impact damage in composite plate using nonlinear acoustic/ultrasound methods. Applied Composite Materials, 2010, 17(5): 481–488
https://doi.org/10.1007/s10443-010-9168-5
10 B Wang, L Z Wu, L Ma, et al. Low-velocity impact characteristics and residual tensile strength of carbon fiber composite lattice core sandwich structures. Composites. Part B, Engineering, 2011, 42(4): 891–897
https://doi.org/10.1016/j.compositesb.2011.01.007
11 R C Batra, G Gopinath, J Q Zheng. Damage and failure in low energy impact of fiber-reinforced polymeric composite laminates. Composite Structures, 2012, 94(2): 540–547
https://doi.org/10.1016/j.compstruct.2011.08.015
12 Y Shi, T Swait, C Soutis. Modelling damage evolution in composite laminates subjected to low velocity impact. Composite Structures, 2012, 94(9): 2902–2913
https://doi.org/10.1016/j.compstruct.2012.03.039
13 M Quaresimin, M Ricotta, L Martello, et al. Energy absorption in composite laminates under impact loading. Composites. Part B, Engineering, 2013, 44(1): 133–140
https://doi.org/10.1016/j.compositesb.2012.06.020
14 S Long, X Yao, X Zhang. Delamination prediction in composite laminates under low-velocity impact. Composite Structures, 2015, 132: 290–298
https://doi.org/10.1016/j.compstruct.2015.05.037
15 B S Jung, M S Kim, J S Kim, et al. Fabrication of a smart air intake structure using shape memory alloy wire embedded composite. Physica Scripta, 2010, 2010(T139): 014042
https://doi.org/10.1088/0031-8949/2010/T139/014042
16 J Raghavan, T Bartkiewicz, S Boyko, et al. Damping, tensile, and impact properties of superelastic shape memory alloy (SMA) fiber-reinforced polymer composites. Composites. Part B, Engineering, 2010, 41(3): 214–222
https://doi.org/10.1016/j.compositesb.2009.10.009
17 N Wierschem, B Andrawes. Superelastic SMA–FRP composite reinforcement for concrete structures. Smart Materials and Structures, 2010, 19(2): 025011
https://doi.org/10.1088/0964-1726/19/2/025011
18 S K Panda, B N Singh. Nonlinear finite element analysis of thermal post-buckling vibration of laminated composite shell panel embedded with SMA fibre. Aerospace Science and Technology, 2013, 29(1): 47–57
https://doi.org/10.1016/j.ast.2013.01.007
19 H Rodrigue, W Wang, B Bhandari, et al. SMA-based smart soft composite structure capable of multiple modes of actuation. Composites. Part B, Engineering, 2015, 82: 152–158
https://doi.org/10.1016/j.compositesb.2015.08.020
20 S M Daghash, O E Ozbulut. Characterization of superelastic shape memory alloy fiber-reinforced polymer composites under tensile cyclic loading. Materials & Design, 2016, 111: 504–512
https://doi.org/10.1016/j.matdes.2016.09.034
21 K Sofocleous, V M Drakonakis, S L Ogin, et al. The influence of carbon nanotubes and shape memory alloy wires to controlled impact resistance of polymer composites. Journal of Composite Materials, 2017, 51(2): 273–285
https://doi.org/10.1177/0021998316640594
22 M El-Tahan, M Dawood. Bond behavior of NiTiNb SMA wires embedded in CFRP composites. Polymer Composites, 2018, 39(10): 3780–3791
https://doi.org/10.1002/pc.24408
23 D Mahmood Baitab, D Laila Abang Haji Abdul Majid, E Junita Abdullah, et al. A review of techniques for embedding shape memory alloy (SMA) wires in smart woven composites. International Journal of Engineering and Technology, 2018, 7(4.13): 129–136
https://doi.org/10.14419/ijet.v7i4.13.21344
24 D J Quade, S C Jana, G N Morscher, et al. The effect of thin film adhesives on mode II interlaminar fracture toughness in carbon fiber composites with shape memory alloy inserts. Mechanics of Materials, 2019, 131: 22–32
https://doi.org/10.1016/j.mechmat.2019.01.002
25 R Eslami-Farsani, M Khazaie. Effect of shape memory alloy wires on high-velocity impact response of basalt fiber metal laminates. Journal of Reinforced Plastics and Composites, 2018, 37(5): 300–309
https://doi.org/10.1177/0731684417744054
26 R Eslami-Farsani, M R Mohaseb Karimlou, A Saeedi, et al. Effect of shape memory alloy wires on the buckling behavior of fiber metal laminates. Fibers and Polymers, 2019, 20(8): 1690–1695
https://doi.org/10.1007/s12221-019-1093-0
27 K Pazhanivel, G B Bhaskar, A Elayaperumal, et al. Influence of SMA reinforcement on the impact resistance of GFRP composite laminates under different temperatures. Bulletin of Materials Science, 2016, 39(3): 889–899
https://doi.org/10.1007/s12034-016-1201-3
28 K Pazhanivel, G B Bhaskar, A Elayaperumal, et al. Influence of Ni–Ti shape memory alloy short fibers on the flexural response of glass fiber reinforced polymeric composites. SN Applied Sciences, 2019, 1(7): 789
https://doi.org/10.1007/s42452-019-0823-7
29 Z Sun, Y Xu, W Wang. Experimentation of the bilinear elastic behavior of plain-woven GFRP composite with embedded SMA wires. Polymers, 2019, 11(3): 405
https://doi.org/10.3390/polym11030405
30 J Wang, Z Moumni, W Zhang, et al. A thermomechanically coupled finite deformation constitutive model for shape memory alloys based on Hencky strain. International Journal of Engineering Science, 2017, 117: 51–77
https://doi.org/10.1016/j.ijengsci.2017.05.003
31 Z Nie. Advanced mesomechanical modeling of triaxially braided composites for dynamic impact analysis with failure. Dissertation for the Doctoral Degree. Akron: The University of Akron, 2014
32 B Yang, H Lei, Z Wang, et al. Effects of SMA filament surface nano SiO2 modification on interface bonding strength of SMA/epoxy composites. Acta Materiae Compositae Sinica, 2015, 32(5): 1341–1348 (in Chinese)
https://doi.org/10.13801/j.cnki.fhclxb.20150302.003
[1] CHEN Wei, YANG Jichang, WU Xiaofeng, LU Dun, GUO Weigang. Finite element simulations of sheet metal forming under complex strain paths[J]. Front. Mech. Eng., 2007, 2(4): 399-403.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed