Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2021, Vol. 16 Issue (3) : 435-450    https://doi.org/10.1007/s11465-021-0630-x
RESEARCH ARTICLE
Precise semi-analytical inverse kinematic solution for 7-DOF offset manipulator with arm angle optimization
Boyu MA, Zongwu XIE, Zainan JIANG(), Hong LIU
School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China; State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
 Download: PDF(1311 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Seven-degree-of-freedom redundant manipulators with link offset have many advantages, including obvious geometric significance and suitability for configu-ration control. Their configuration is similar to that of the experimental module manipulator (EMM) in the Chinese Space Station Remote Manipulator System. However, finding the analytical solution of an EMM on the basis of arm angle parameterization is difficult. This study proposes a high-precision, semi-analytical inverse method for EMMs. Firstly, the analytical inverse kinematic solution is established based on joint angle parameterization. Secondly, the analytical inverse kinematic solution for a non-offset spherical–roll–spherical (SRS) redundant manipulator is derived based on arm angle parameterization. The approximate solution of the EMM is calculated in accordance with the relationship between the joint angles of the EMM and the SRS manipulator. Thirdly, the error is corrected using a numerical method through the analytical inverse solution based on joint angle parameterization. After selecting the stride and termination condition, the precise inverse solution is computed for the EMM based on arm angle parameterization. Lastly, case solutions confirm that this method has high precision, and the arm angle parameterization method is superior to the joint angle parameterization method in terms of parameter selection.

Keywords 7-DOF redundant manipulator      inverse kinematics      semi-analytical      arm angle      link offset     
Corresponding Author(s): Zainan JIANG   
Just Accepted Date: 29 March 2021   Online First Date: 17 June 2021    Issue Date: 24 September 2021
 Cite this article:   
Boyu MA,Zongwu XIE,Zainan JIANG, et al. Precise semi-analytical inverse kinematic solution for 7-DOF offset manipulator with arm angle optimization[J]. Front. Mech. Eng., 2021, 16(3): 435-450.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-021-0630-x
https://academic.hep.com.cn/fme/EN/Y2021/V16/I3/435
Fig.1  Experimental module manipulator: (a) D–H frame and (b) initial configuration.
Link i ai 1( DH)/m αi1(DH)/(° ) di (DH)/m θi(DH)/( ° )
1 0 90 a0 0
2 0 90 a1 0
3 0 –90 a2 -90
4 a3 0 a4 0
5 a5 0 a6 90
6 0 90 a7 0
7 0 –90 a8 0
8 0 90 0 90
Tab.1  D–H parameters of the experimental module manipulator
Fig.2  Reference plane, arm plane, and arm angle of the experimental module manipulator.
Fig.3  Inverse kinematic solution diagram of the spherical–roll–spherical manipulator on the basis of arm angle parameterization.
Joint angle EMM SRS manipulator Relationship
θ1, θ2 (a 0+pxa8 nx)c2 +[ (a 8 ny p y) c1+( pza 8 nz)s 1 ]s 2+( a2+a4 +a6)=0 (a 0+pxa8 nx) c2+ [( a8nypy )c 1+ (p z a8n z) s1]s 2+(a2+ a4+a6)=0 θ1= θ1, θ2= θ2
θ6 c6=(nzs 1nyc 1 )s 2 nx c2 c 6= (nzs1 ny c1) s2 nxc 2 θ6= θ6
θ7 { c 7= (s zs 1syc 1 )s 2 + sx c2s 6, s 7= (az s1ay c1) s2 + a xc2 s6 { c 7= (szs1 sy c1)s2 + s x c2s 6,s7=( azs1 a yc 1) s2 + ax c2 s6 θ7= θ7
θ4 c4=A2+B 2 a32 a522 a3a 5 c4 = A 2+ B 2 a32 a522 a3a 5 The EMM a 1 0 and a70, and the SRS manipulator a1 =a7=0. Therefore, AA, B B, θ4 θ4,θ3 θ 3, and θ5 θ 5.θ345 has no relationship with a1 and a7; hence, θ345= θ34 5.
θ3 { s 3=A(a 3+ a5c 4)Ba5 s4a3 2+a52+2a3a5c4,c3=B( a3+a5 c4)+A a5s 4 a32+a5 2+2a3a5c4 { s 3= A(a 3+a5c4) Ba5s4 a32+a 52+2a 3 a5c 4,c3= B(a3+a 5 c4)+ Aa5s4 a32+a 52+2a 3 a5c 4
θ5 θ5=(θ3+ θ4+θ5 )(θ3+θ4 )??????????????=arctan?2(s345 , c 345)(θ3 +θ 4) θ5 =(θ3+θ4+θ5)( θ3 +θ 4) ????? ????? ????? ????? ????= ar ct an 2( s345, c34 5 )(θ3 +θ 4)
θ3+ θ4+θ5 { s 345= nzc 1+nys1 s6, c 345=[( szc1+ sy s1)s7 +(a zc 1+ays1) c7] { s345= nzc1 +nys 1s 6, c3 45=[( szc1 +sys 1)s 7 +(a zc1+a ys1)c 7]
Tab.2  Relationship of joint angles between the experimental module manipulator (EMM) and the spherical–roll–spherical (SRS) manipulator
Inverse solution θ1/(° ) θ2/(° ) θ3/(° ) θ4/(° ) θ5/(° ) θ6/(° ) θ7/(° ) Actual arm angle ψ˜/(° )
1 –75.0144 77.9015 –35.0088 –67.7947 –106.9448 108.4550 78.4236 129.7819
2 –75.0144 77.9015 –32.9623 –93.9476 97.1616 –108.4550 –101.5764 130.1939
3 104.9856 –77.9015 145.4975 –44.7304 –130.5154 108.4550 78.4236 142.4985
4 104.9856 –77.9015 157.5737 –83.3832 76.0612 –108.4550 –101.5764 142.5272
5 65.0858 129.3636 –170.4417 76.7806 –83.3659 87.0906 –58.9323 126.6470
6 65.0858 129.3636 –160.6816 39.4032 124.2514 –87.0906 121.0677 125.3823
7 –114.9142 –129.3636 12.8840 96.8902 –106.8012 87.0906 –58.9323 140.8476
8 –114.9142 –129.3636 10.8205 75.3257 96.8267 –87.0906 121.0677 140.3597
Tab.3  Eight approximate solutions calculated by nominal arm angle ψ=135°and their actual arm angle ψ˜ in Case 1
Fig.4  Flowchart for the algorithm for correcting the arm angle errors.
Inverse solution θ1/(° ) θ2/(° ) θ3/(° ) θ4/(° ) θ5/(° ) θ6/(° ) θ7/(° ) Actual arm angle ψ˜/(° )
1 –79.6594 80.0057 –31.7645 –68.5655 –107.4127 112.4957 81.6077 134.9996
2 –79.2564 79.8118 –29.8156 –94.8141 96.7095 –112.1390 –98.6737 135.0003
3 111.1286 –75.5521 143.0353 –46.8091 –128.5043 103.3635 74.3511 135.0000
4 111.4466 –75.4437 154.0291 –84.2827 77.8483 –103.1072 –105.8565 134.9999
5 57.8508 124.0487 –170.7387 75.5782 –86.7634 81.7248 –53.1516 135.0002
6 56.9938 123.3800 –162.8315 40.3714 119.9489 –81.0841 127.5950 134.9995
7 –109.5662 –132.8739 14.2388 97.0154 –104.6965 90.9200 –62.6529 134.9997
8 –109.8352 –132.7062 12.9465 74.4857 98.9454 –90.7312 117.5244 135.0001
Tab.4  Eight precise solutions corrected to nominal arm angle ψ=135°and their actual arm angle ψ˜ in Case 1
Fig.5  Experimental module manipulator configuration of the first precise solution in Case 1.
Fig.6  Curves of actual arm angles ψ˜ correspond to θ1 in Case 1: (a) θ2+, θ4, θ6+; (b) θ2+, θ4 , θ6; (c) θ2, θ4, θ6+; (d) θ2, θ4, θ6; (e) θ2+, θ4+, θ6 +; (f) θ2+, θ4+, θ6 ; (g) θ2, θ4+, θ6+; and (h) θ2, θ4+, θ6 .
Inverse solution θ1/(° ) θ2/(° ) θ3/(° ) θ4/(° ) θ5/(° ) θ6/(° ) θ7/(° ) Actual arm angle ψ˜/(° )
1 –74.5529 41.1411 59.0447 –147.0799 39.7875 96.3458 –25.6682 135.8676
2 –74.5529 41.1411 33.3418 –123.9961 –137.5933 –96.3458 154.3318 122.7169
3 105.4471 –41.1411 –127.4815 –121.8101 21.0440 96.3458 –25.6682 146.4159
4 105.4471 –41.1411 –151.1755 –97.6415 –159.4307 –96.3458 154.3318 136.0138
5 25.7588 113.7663 103.5857 97.3836 139.3401 121.8922 98.1554 138.8542
6 25.7588 113.7663 85.7979 125.7015 –51.1899 –121.8922 –81.8446 131.6935
7 –154.2412 –113.7663 –99.9945 121.7516 138.5523 121.8922 98.1554 139.3173
8 –154.2412 –113.7663 –124.9401 145.1176 –39.8680 –121.8922 –81.8446 125.0305
Tab.5  Eight approximate solutions calculated by nominal arm angle ψ=135°and their actual arm angle ψ˜ in Case 2
Inverse solution θ1/(° ) θ2/(° ) θ3/(° ) θ4/(° ) θ5/(° ) θ6/(° ) θ7/(° ) Actual arm angle ψ˜/(° )
1 –74.2549 40.5634 58.1106 –147.0877 40.4691 96.8771 –25.9693 135.0011
2 -77.9949 51.0466 43.4482 –125.4135 –143.7159 –87.7922 159.8987 134.9980
3 113.0101 –31.4347 –137.9357 –123.3949 26.0090 105.8662 –30.5921 135.0012
4 105.9051 –40.2642 –151.8906 –97.6617 –159.0967 –97.1529 153.8738 135.0007
5 23.3078 116.7033 100.6682 97.9066 140.0811 118.3647 96.9436 135.0007
6 27.5818 111.2742 88.3354 125.4589 –52.2753 –124.7980 –80.9160 134.9985
7 –156.4982 –116.4861 –103.1285 121.4000 140.5163 118.6301 97.0378 135.0014
8 –150.2092 –107.8211 –117.2833 146.4267 –46.1905 –128.7216 –79.7563 135.0004
Tab.6  Eight precise solutions corrected to nominal arm angle ψ=135°and their actual arm angle ψ˜ in Case 2
Fig.7  Experimental module manipulator of the first precise solution in Case 2.
Fig.8  Curves of actual arm angles ψ˜ correspond to θ1 in Case 2: (a) θ2+, θ4, θ6+; (b) θ2+, θ4 , θ6; (c) θ2, θ4, θ6+; (d) θ2, θ4, θ6; (e) θ2, θ4+, θ6+; (f) θ2, θ4+, θ6 ; (g) θ2+, θ4+, θ6 +; and (h) θ2+, θ4+, θ6 .
Combination of joint angles Type of interval Interval of actual arm angle ψ˜/(° )
θ2+, θ4, θ6+ Non-solution (16.1116,??26.2073 )(168.8087,?172.7647)
θ2, θ4, θ6+ Repetition-solution [16.1116 ,?26.2073][ 168.8087,?172.7647]
θ2+, θ4, θ6 Non-solution (31.4828,?36.0285)(151.4337,?162.3077)
θ2, θ4, θ6 Repetition-solution [31.4828 ,?36.0285][ 151.4337,?162.3077]
θ2, θ4+, θ6+ Non-solution (166.8049,?160.3144) (29.4358 ,?17.4838)
θ2+, θ4+, θ6 + Repetition-solution [166.8049,?160.3144][29.4358, ?17.4838]
θ2, θ4+, θ6 Non-solution (167.1600,?156.2214) (31.5175 ,?25.6658)
θ2+, θ4+, θ6 Repetition-solution [167.1600,?156.2214][31.5175, ?25.6658]
Tab.7  Changes in actual arm angle ψ˜ in the interval [π, ? π ]
CSSRMS Chinese Space Station Remote Manipulator System
CMM Core module manipulator
EMM Experimental module manipulator
7-DOF 7-degree-of-freedom
SSRMS Space Station Remote Manipulator System
SRS Spherical–roll–spherical
  
ai (i=0,?? 1,?...,?8) Link length of the EMM
as ij (i,?j=1, ?2,?3) Element of the ith row and jth column of matrix R 3 0
aw ij (i,?j=1, ?2,?3) Element of the ith row and jth column of matrix EER4
d Vector which is the projection of vector e on vector w
e Vector from shoulder point S to elbow point E
e0 Vector expressed by e in base coordinate system Σ0
e 0 0 Vector expressed by e 0 when arm angle ψ=0
I3 3×3 identity matrix
k Vector which is on the plane that contains vectors V and w and perpendicular to w
k ^ Unit vector of k
l Multiplication cross vector of V and w, defined as l=V×w
p Vector which is perpendicular to w and passes through point E, defined as p= e d
p ^ Unit vector of p
P EE0 Position vector of end coordinate system ΣEE in base coordinate system Σ0
R i j(i, ?j=0,?1 ,?...,? 7,?EE) Rotation matrix of coordinate system Σi relative to coordinate system Σj (EE corresponds to end coordinate system ΣEE)
R4ψ= 0 0 Rotation matrix of coordinate system Σ4 relative to base coordinate system Σ0 when ψ=0
R ψ 0 Rotation matrix which represents the rotation of arm angle ψ about vector w
T i j(i, ?j=0,?1 ,?...,? 7,?EE) Homogeneous transformation matrix of coordinate system Σi relative to coordinate system Σj
[ul ×] Skew-symmetric matrix of vector l
[uw ×] Skew-symmetric matrix of vector w
V Unit vector parallel to the rotation axis of joint 1
V0 Vector expressed by V in base coordinate system Σ0, defined as V 0=[1 0 0] T
w Vector from shoulder point S to wrist point W
w^ Unit vector of w
w0 Vector expressed by w in base coordinate system Σ0
w 0 0 Vector expressed by w 0 when arm angle ψ=0
x 3 4, y 3 4, and z 3 4 Unit vectors of three coordinate axes of coordinate system Σ3 relative to coordinate system Σ4
x40 0, y40 0, and z40 0 Unit vectors of three coordinate axes of coordinate system Σ4 relative to base coordinate system Σ0 when arm angle ψ=0, and x30 0 has the same meaning
α Angle from w 0 0 rotation to e 0 0
β Angle between S E and E W
ψ Nominal arm angle of the EMM
ψ˜ Actual arm angle of the EMM
θi (i=1,?2,?... ,?7) Joint angle of the EMM
θ i (i=1,?2,?... ,?7) Joint angle of the SRS manipulator
θ2 and θ2+ θ2 calculated by Eqs. (4) and (5)
θ4 and θ4+ Formulas of the negative and positive values in accordance with θ4 calculated by Eq. (8)
θ6 and θ6+ Formulas of the negative and positive values in accordance with θ6 calculated by Eq. (6)
Δθ Stride of θ1
ε Iteration termination condition
Σi (i=0,?1,?... ,?7,?EE) Coordinate system of the manipulator
  
1 R Yoshimitsu, Y Yuguchi, A Kobayashi, et al.. Dynamic simulator for HTV capture with Space Station Remote Manipulator System. In: Proceedings of the 12th International Symposium on Artificial Intelligence, Robotics and Automation in Space. Montreal: CSA, 2014, 1–8
2 R Rembala, C Ower. Robotic assembly and maintenance of future space stations based on the ISS mission operations experience. Acta Astronautica, 2009, 65(7–8): 912–920
https://doi.org/10.1016/j.actaastro.2009.03.064
3 A Flores-Abad, O Ma, K Pham, et al.. A review of space robotics technologies for on-orbit servicing. Progress in Aerospace Sciences, 2014, 68: 1–26
https://doi.org/10.1016/j.paerosci.2014.03.002
4 M Sabatini, P Gasbarri, R Monti, et al.. Vibration control of a flexible space manipulator during on orbit operations. Acta Astronautica, 2012, 73(4–5): 109–121
https://doi.org/10.1016/j.actaastro.2011.11.012
5 S B Nokleby. Singularity analysis of the Canadarm2. Mechanism and Machine Theory, 2007, 42(4): 442–454
https://doi.org/10.1016/j.mechmachtheory.2006.04.004
6 E Coleshill, L Oshinowo, R Rembala, et al.. Dextre: Improving maintenance operations on the International Space Station. Acta Astronautica, 2009, 64(9–10): 869–874
https://doi.org/10.1016/j.actaastro.2008.11.011
7 R Boumans, C Heemskerk. The European robotic arm for the international space station. Robotics and Autonomous Systems, 1998, 23(1–2): 17–27
https://doi.org/10.1016/S0921-8890(97)00054-7
8 K Krukewich, J Sexton, K Cavin, et al.. The systems engineering approach to the integration of the Space Station Remote Manipulator System on the International Space Station (ISS). Space Technology (Oxford, England), 1996, 16(1): 31–48
https://doi.org/10.1016/0892-9270(96)00001-2
9 D Li, W Rao, C Hu, et al.. Overview of the Chinese Space Station manipulator. In: Proceedings of AIAA SPACE 2015 Conference and Exposition. Pasadena: AIAA, 2015, 1–6
https://doi.org/10.2514/6.2015-4540
10 H Liu, Z Li, Y Liu, et al.. Key technologies of TianGong-2 robotic hand and its on-orbit experiments. SCIENTIA SINICA Technologica, 2018, 48(12): 1313–1320 (in Chinese)
https://doi.org/10.1360/N092018-00168
11 M A Diftler, J S Mehling, M E Abdallah, et al.. Robonaut 2—The first humanoid robot in space. In: Proceedings of the IEEE International Conference on Robotics and Automation. Shanghai: IEEE, 2011, 2178–2183
https://doi.org/10.1109/ICRA.2011.5979830
12 Y Fukazu, N Hara, Y Kanamiya, et al.. Reactionless resolved acceleration control with vibration suppression capability for JEMRMS/SFA. In: Proceedings of the IEEE International Conference on Robotics and Biomimetics. Bangkok: IEEE, 2009, 1359–1364
https://doi.org/10.1109/ROBIO.2009.4913198
13 T Imaida, Y Yokokohji, T Doi, et al.. Ground-space bilateral teleoperation of ETS-VII robot arm by direct bilateral coupling under 7-s time delay condition. IEEE Transactions on Robotics and Automation, 2004, 20(3): 499–511
https://doi.org/10.1109/TRA.2004.825271
14 H Liu, Z Jiang, Y Liu. Review of space manipulator technology. Manned Spaceflight, 2015, 21(5): 435–443 (in Chinese)
15 J Baillieul. Avoiding obstacles and resolving kinematic redundancy. In: Proceedings of the IEEE International Conference on Robotics and Automation. San Francisco: IEEE, 1986, 1698–1704
https://doi.org/10.1109/ROBOT.1986.1087464
16 D Guo, Y Zhang. Acceleration-level inequality-based MAN scheme for obstacle avoidance of redundant robot manipulators. IEEE Transactions on Industrial Electronics, 2014, 61(12): 6903–6914
https://doi.org/10.1109/TIE.2014.2331036
17 R Stevenson, B Shirinzadeh, G Alici. Singularity avoidance and aspect maintenance in redundant manipulators. In: Proceedings of the 7th International Conference on Control, Automation, Robotics and Vision. Singapore: IEEE, 2002, 857–862
18 W Xu, J Zhang, B Liang, et al.. Singularity analysis and avoidance for robot manipulators with nonspherical wrists. IEEE Transactions on Industrial Electronics, 2016, 63(1): 277–290
https://doi.org/10.1109/TIE.2015.2464176
19 J M Hollerbach, K C Suh. Redundancy resolution of manipulators through torque optimization. In: Proceedings of the IEEE International Conference on Robotics and Automation. St. Louis: IEEE, 1985, 1016–1021
20 Y Zhang, W Li, X Yu, et al.. Encoder based online motion planning and feedback control of redundant manipulators. Control Engineering Practice, 2013, 21(10): 1277–1289
https://doi.org/10.1016/j.conengprac.2013.06.001
21 K N Groom, A A Maciejewski, V Balakrishnan. Real-time failure-tolerant control of kinematically redundant manipulators. IEEE Transactions on Robotics and Automation, 1999, 15(6): 1109–1115
https://doi.org/10.1109/70.817673
22 R S Jamisola, A A Maciejewski, R G Roberts. Failure-tolerant path planning for kinematically redundant manipulators anticipating locked-joint failures. IEEE Transactions on Robotics, 2006, 22(4): 603–612
https://doi.org/10.1109/TRO.2006.878959
23 Y She, W Xu, H Su, et al.. Fault-tolerant analysis and control of SSRMS-type manipulators with single-joint failure. Acta Astronautica, 2016, 120: 270–286
https://doi.org/10.1016/j.actaastro.2015.12.012
24 G K Singh, J Claassens. An analytical solution for the inverse kinematics of a redundant 7DoF manipulator with link offsets. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Taipei: IEEE, 2010, 2976–2982
https://doi.org/10.1109/IROS.2010.5649095
25 H Seraji. Configuration control of redundant manipulators: Theory and implementation. IEEE Transactions on Robotics and Automation, 1989, 5(4): 472–490
https://doi.org/10.1109/70.88062
26 R V Dubey, J A Euler, S M Babcock. Real-time implementation of an optimization scheme for seven-degree-of-freedom redundant manipulators. IEEE Transactions on Robotics and Automation, 1991, 7(5): 579–588
https://doi.org/10.1109/70.97869
27 M Shah, R V Patel. Inverse Jacobian based hybrid impedance control of redundant manipulators. In: Proceedings of the IEEE International Conference Mechatronics and Automation. Niagara Falls: IEEE, 2005, 55–60
https://doi.org/10.1109/ICMA.2005.1626522
28 A Colomé, C Torras. Closed-loop inverse kinematics for redundant robots: Comparative assessment and two enhancements. IEEE/ASME Transactions on Mechatronics, 2015, 20(2): 944–955
https://doi.org/10.1109/TMECH.2014.2326304
29 S Lee, A K Bejczy. Redundant arm kinematic control based on parameterization. In: Proceedings of the IEEE International Conference on Robotics and Automation. Sacramento: IEEE, 1991, 458–465
https://doi.org/10.1109/ROBOT.1991.131621
30 D Zu, Z Wu, D Tan. Efficient inverse kinematic solution for redundant manipulators. Chinese Journal of Mechanical Engineering, 2005, 41(6): 71–75 (in Chinese)
https://doi.org/10.3901/JME.2005.06.071
31 K Kreutz-Delgado, M Long, H Seraji. Kinematic analysis of 7-DOF manipulators. International Journal of Robotics Research, 1992, 11(5): 469–481
https://doi.org/10.1177/027836499201100504
32 M Shimizu, H Kakuya, W K Yoon, et al.. Analytical inverse kinematic computation for 7-DOF redundant manipulators with joint limits and its application to redundancy resolution. IEEE Transactions on Robotics, 2008, 24(5): 1131–1142
https://doi.org/10.1109/TRO.2008.2003266
33 W Xu, L Yan, Z Mu, et al.. Dual arm-angle parameterisation and its applications for analytical inverse kinematics of redundant mani-pulators. Robotica, 2016, 34(12): 2669–2688
https://doi.org/10.1017/S0263574715000284
34 D Zhou, L Ji, Q Zhang, et al.. Practical analytical inverse kinematic approach for 7-DOF space manipulators with joint and attitude limits. Intelligent Service Robotics, 2015, 8(4): 215–224
https://doi.org/10.1007/s11370-015-0180-3
35 S Dereli, R Koker. Calculation of the inverse kinematics solution of the 7-DOF redundant robot manipulator by the firefly algorithm and statistical analysis of the results in terms of speed and accuracy. Inverse Problems in Science and Engineering, 2020, 28(5): 601–613
https://doi.org/10.1080/17415977.2019.1602124
36 M Faroni, M Beschi, N Pedrocchi. Inverse kinematics of redundant manipulators with dynamic bounds on joint movements. IEEE Robotics and Automation Letters, 2020, 5(4): 6435–6442
https://doi.org/10.1109/LRA.2020.3013879
37 M Gong, X Li, L Zhang. Analytical inverse kinematics and self-motion application for 7-DOF redundant manipulator. IEEE Access: Practical Innovations, Open Solutions, 2019, 7: 18662–18674
https://doi.org/10.1109/ACCESS.2019.2895741
38 M Kelemen, I Virgala, T Liptak, et al.. A novel approach for a inverse kinematics solution of a redundant manipulator. Applied Sciences, 2018, 8(11): 2229
https://doi.org/10.3390/app8112229
39 C D III Crane, J Duffy, T Carnahan. A kinematic analysis of the space station remote manipulator system (SSRMS). Journal of Robotic Systems, 1991, 8(5): 637–658
https://doi.org/10.1002/rob.4620080505
40 C Yu, M Jin, H Liu. An analytical solution for inverse kinematic of 7-DOF redundant manipulators with offset-wrist. In: Proceedings of the IEEE International Conference on Mechatronics and Automation. Chengdu: IEEE, 2012, 92–97
https://doi.org/10.1109/ICMA.2012.6282813
41 V Abbasi, B Azria, E Tabarah, et al.. Improved 7-DOF control of ISS robotic manipulators. In: Proceedings of AIAA Space OPS 2004 Conference. Montreal: AIAA, 2004
https://doi.org/10.2514/6.2004-610-407
42 S Lu, Y Gu, J Zhao, et al.. An iterative calculation method for solve the inverse kinematics of a 7-DOF robot with link offset. In: Huang Y, Wu H, Liu H, et al., eds. Intelligent Robotics and Applications. ICIRA 2017. Lecture Notes in Computer Science, vol 10464. Cham: Springer
https://doi.org/10.1007/978-3-319-65298-6_65
43 M Jin, Q Liu, B Wang, et al.. An efficient and accurate inverse kinematics for 7-DOF redundant manipulators based on a hybrid of analytical and numerical method. IEEE Access: Practical Innovations, Open Solutions, 2020, 8: 16316–16330
https://doi.org/10.1109/ACCESS.2020.2966768
44 W Xu, J Zhang, L Yan, et al.. Parameterized inverse kinematics resolution method for a redundant space manipulator with link offset. Journal of Astronautics, 2015, 36(1): 33–39 (in Chinese)
45 J J Craig. Introduction to Robotics: Mechanics and Control. 4th ed. New York: Pearson Education Inc., 2005
[1] Fugui XIE,Xin-Jun LIU. Analysis of the kinematic characteristics of a high-speed parallel robot with Schönflies motion: Mobility, kinematics, and singularity[J]. Front. Mech. Eng., 2016, 11(2): 135-143.
[2] S. SHANKAR GANESH,A.B. KOTESWARA RAO. Stiffness of a 3-degree of freedom translational parallel kinematic machine[J]. Front. Mech. Eng., 2014, 9(3): 233-241.
[3] Jing LU, Yu XIANG, Qiao NI. Dynamic characteristics analysis of active constrained layer damping plate with various boundary conditions[J]. Front Mech Eng, 2011, 6(4): 449-455.
[4] ZHAO Jie, WANG Weizhong, GAO Yongsheng, CAI Hegao. Generation of closed-form inverse kinematics for reconfigurable robots[J]. Front. Mech. Eng., 2008, 3(1): 91-96.
[5] JIA Dongyong, ZHANG Jianmin, SUN Hongchang, NIU Zhigang. Inverse kinematics analysis and numerical control experiment for PRS-XY style hybrid machining tool[J]. Front. Mech. Eng., 2007, 2(2): 235-238.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed