Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2022, Vol. 17 Issue (1) : 6    https://doi.org/10.1007/s11465-021-0662-2
RESEARCH ARTICLE
Development of lunar regolith composite and structure via laser-assisted sintering
Hua ZHAO1, Lu MENG2, Shaoying LI1, Jihong ZHU1,3(), Shangqin YUAN1,4(), Weihong ZHANG1
1. State IJR Center of Aerospace Design and Additive Manufacturing, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
2. Beijing Institute of Radio Measurement, Beijing 100854, China
3. Key Laboratory of Metal High Performance Additive Manufacturing and Innovative Design, MIIT China, Northwestern Polytechnical University, Xi'an 710072, China
4. Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an 710072, China
 Download: PDF(3738 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Aiming at the exploration and resource utilization activities on the Moon, in situ resource utilization and in situ manufacturing are proposed to minimize the dependence on the ground transportation supplies. In this paper, a laser-assisted additive manufacturing process is developed to fabricate lunar regolith composites with PA12/SiO2 mixing powders. The process parameters and composite material compositions are optimized in an appropriate range through orthogonal experiments to establish the relationship of process–structure–property for lunar regolith composites. The optimal combination of composite material compositions and process parameters are mixing ratio of 50/50 in volume, laser power of 30 W, scanning speed of 3500 mm/s, and scanning hatch space of 0.2 mm. The maximum tensile strength of lunar regolith composites reaches 9.248 MPa, and the maximum depth of surface variation is 120.79 μm, which indicates poor powder fusion and sintering quality. Thereafter, the mechanical properties of laser-sintered lunar regolith composites are implemented to the topology optimization design of complex structures. The effectiveness and the feasibility of this laser-assisted process are potentially developed for future lightweight design and manufacturing of the solar panel installed on the lunar rover.

Keywords in situ manufacturing      laser-assisted powder fusion process      mechanical properties      topological structure design     
Corresponding Author(s): Jihong ZHU,Shangqin YUAN   
Just Accepted Date: 28 February 2022   Online First Date: 28 March 2022    Issue Date: 08 April 2022
 Cite this article:   
Hua ZHAO,Lu MENG,Shaoying LI, et al. Development of lunar regolith composite and structure via laser-assisted sintering[J]. Front. Mech. Eng., 2022, 17(1): 6.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-021-0662-2
https://academic.hep.com.cn/fme/EN/Y2022/V17/I1/6
Level of parameter r/% p/W v/(mm·s−1) h/mm
1 30/70 20 3000 0.20
2 50/50 25 3500 0.25
3 100/0 30 4000 0.30
Tab.1  Different process parameters (mixing ratio r [PA12/SiO2], laser power p, scanning speed v, and hatch space h) investigated in the orthogonal experiments
Fig.1  SEM images of (a) neat PA12, (b) PA12/SiO2 (50/50) composite powders, and (c) PA12/SiO2 (30/70) composite powders.
Fig.2  DSC curves of neat PA12 and PA12/SiO2 composite powders during the heating–cooling procedure.
Fig.3  TGA and DTG curves of (a) neat PA12, (b) PA12/SiO2 (50/50) composite powders, and (c) PA12/SiO2 (30/70) composite powders.
Material Onset melting temperature/°C Offset melting temperature/°C Melting peak/°C Enthalpy of melting/(J·g−1) Onset recrystallization temperature/°C Offset recrystallization temperature/°C Recrystallization peak/°C Enthalpy of recrystallization/(J·g−1) Glass window width/°C
Neat PA12 181.0 189.2 186.8 101.8 139.4 149.7 143.6 33.3 31.3
PA12/SiO2 (50/50) 181.0 188.3 185.9 28.5 144.1 152.0 149.0 5.5 29.0
PA12/SiO2 (30/70) 181.9 188.0 185.3 18.3 146.4 152.6 150.0 5.2 29.3
Tab.2  Melting and recrystallization parameters of PA12 and PA12/SiO2 composite powders
Material Onset decomposition temperature/°C Offset decomposition temperature/°C Decomposition peak/°C Mass loss/%
Neat PA12 416 457 432 73.5
PA12/SiO2 (50/50) 411 467 440 27.7
PA12/SiO2 (30/70) 408 463 436 17.5
Tab.3  Decomposition parameters of PA12 and PA12/SiO2 composite powders
Fig.4  Engineering stress–strain curves illustrate the influence of process parameters on tensile strength: (a) PA12/SiO2 (30/70), (b) PA12/SiO2 (50/50), and (c) neat PA12.
No. Mixing ratio Laser power Scanning speed Hatch space Tensile strength/MPa Tensile modulus/MPa Poisson’s ratio
1 1 1 1 1 4.024 1676.4 0.23
2 1 2 2 2 4.120 1229.0 0.22
3 1 3 3 3 3.404 673.9 0.23
4 2 1 2 3 8.888 1533.0 0.16
5 2 2 3 1 8.680 2005.5 0.21
6 2 3 1 2 9.248 2270.2 0.20
7 3 1 3 2 16.550 862.8 0.40
8 3 2 1 3 32.018 1509.0 0.40
9 3 3 2 1 46.575 1913.8 0.43
Tab.4  Orthogonal experimental results on the mechanical properties of tensile specimens
Level Mixing ratio Laser power Scanning speed Hatch space
I a) 11.548 29.462 45.290 59.279
II 26.816 44.818 59.583 29.918
III 95.143 59.227 28.634 44.310
Range (R) b) 83.595 29.765 30.949 29.361
Tab.5  Analysis and calculation of the orthogonal experimental results
Fig.5  Trend charts of tensile strength varied with the levels of the factors: (a) mixing ratio, (b) laser power, (c) scanning speed, and (d) hatch space.
Fig.6  (a) 2D surface of PA12/SiO2 specimen built by optimal parameters observed under a digital optical microscope, (b) porosity characterization by 3D depth synthesis and then zoomed in to illustrate in (c).
Fig.7  Topology optimization design and manufacturing with PA12/SiO2 composite powders of the solar panel installed on the lunar rover.
Abbreviations
AM Additive manufacturing
CAD Computer-aided design
DIC Digital image correlation
DLP Digital light processing
DSC Differential scanning calorimetry
DTG Differential thermogravimetry
ESA European Space Agency
SEM Scanning electron microscope
SLS Selective laser sintering
STA Synchronous thermal analyzer
TGA Thermogravimetric analysis
Variables
F External force loading on the structure
h Hatch space
p Laser power
r Mixing ratio
R Influence degree of corresponding factors
Tm Melting peak temperature
Tr Recrystallization peak temperature
v Scanning speed
  
1 W R Wu, W W Liu, D Qiao, D G Jie. Investigation on the development of deep space exploration. Science China Technological Sciences, 2012, 55( 4): 1086– 1091
https://doi.org/10.1007/s11431-012-4759-z
2 L Xu, Y L Zou, Y Z Jia. China’s planning for deep space exploration and lunar exploration before 2030. Chinese Journal of Space Science, 2018, 38( 5): 591– 592
https://doi.org/10.11728/cjss2018.05.591
3 J T Howell, J C Fikes, C A McLemore, J E Good. On-site fabrication infrastructure to enable efficient exploration and utilization of space. In: Proceedings of International Astronautical Federation—the 59th International Astronautical Congress. Glasgow, 2008, 20090016302
4 T S Lee, J Lee, K Y Ann. Manufacture of polymeric concrete on the Moon. Acta Astronautica, 2015, 114 : 60– 64
https://doi.org/10.1016/j.actaastro.2015.04.004
5 A Goulas, J G P Binner, R A Harris, R J Friel. Assessing extraterrestrial regolith material simulants for in-situ resource utilisation based 3D printing. Applied Materials Today, 2017, 6 : 54– 61
https://doi.org/10.1016/j.apmt.2016.11.004
6 G B Sanders, W E Larson. Integration of in-situ resource utilization into lunar/Mars exploration through field analogs. Advances in Space Research, 2011, 47( 1): 20– 29
https://doi.org/10.1016/j.asr.2010.08.020
7 P E Hintze, S Quintana. Building a lunar or Martian launch pad with in situ materials: recent laboratory and field studies. Journal of Aerospace Engineering, 2013, 26( 1): 134– 142
https://doi.org/10.1061/(ASCE)AS.1943-5525.0000205
8 J A Bassler, M P Bodiford, M S Hammond, R King, C A Mclemore, N R Hall, M R Fiske, J A Ray. In situ fabrication and repair (ISFR) technologies; new challenges for exploration . In: Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit. Reno, 2006, AIAA 2006– 350
9 S Jessen, E Choi, L J Xue. Development of a space manufacturing facility for in-situ fabrication of large space structures. In: Proceedings of the 57th International Astronautical Congress. Valencia, 2006, 1– 11
https://doi.org/10.2514/6.IAC-06-D3.2.04
10 G B Sanders, W E Larson. Progress made in lunar in situ resource utilization under NASA’s exploration technology and development program. Journal of Aerospace Engineering, 2013, 26( 1): 5– 17
https://doi.org/10.1061/(ASCE)AS.1943-5525.0000208
11 J N Rasera, J J Cilliers, J A Lamamy, K Hadler. The beneficiation of lunar regolith for space resource utilisation: a review. Planetary and Space Science, 2020, 186 : 104879
https://doi.org/10.1016/j.pss.2020.104879
12 C Montes, K Broussard, M Gongre, N Simicevic, J Mejia, J Tham, E Allouche, G Davis. Evaluation of lunar regolith geopolymer binder as a radioactive shielding material for space exploration applications. Advances in Space Research, 2015, 56( 6): 1212– 1221
https://doi.org/10.1016/j.asr.2015.05.044
13 N J Werkheiser, J E Edmunson, M R Fiske, B Khoshnevis. On the development of additive construction technologies for application to development of lunar/martian surface structures using in-situ materials . In: Proceedings of AIAA SPACE 2015 Conference and Exposition. Pasadena, 2015, AIAA 2015– 4451
14 C A McLemore, J C Fikes, K S McCarley, J E Good, J P Kennedy, S D Gilley. From lunar regolith to fabricated parts: technology developments and the utilization of Moon dirt. In: Proceedings of the 11th Biennial ASCE Aerospace Division International Conference on Engineering, Science, Construction, and Operations in Challenging Environments. Long Beach: ASCE, 2008
15 M Z Naser, A I Chehab. Materials and design concepts for space-resilient structures. Progress in Aerospace Sciences, 2018, 98 : 74– 90
https://doi.org/10.1016/j.paerosci.2018.03.004
16 M S Hammond, J E Good, S D Gilley, R W Howard. Developing fabrication technologies to provide on demand manufacturing for exploration of the Moon and Mars. In: Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 2006, 526
https://doi.org/10.2514/6.2006-526
17 H Toutanji, M R Fiske, M P Bodiford. Development and application of lunar “concrete”' for habitats. In: Proceedings of the 10th Biennial International Conference on Engineering, Construction, and Operations in Challenging Environments and Second NASA/ARO/ASCE Workshop on Granular Materials in Lunar and Martian Exploration. Houston: ASCE, 2006, 1– 8
https://doi.org/10.1061/40830(188)69
18 K G Cooper, J E Good, S D Gilley. Layered metals fabrication technology development for support of lunar exploration at NASA/MSFC. AIP Conference Proceedings, 2007, 880 : 728– 735
https://doi.org/10.1063/1.2437512
19 V Srivastava, S Lim, M Anand. Microwave processing of lunar soil for supporting longer-term surface exploration on the Moon. Space Policy, 2016, 37 : 92– 96
https://doi.org/10.1016/j.spacepol.2016.07.005
20 S M Allan, B J Merritt, B F Griffin, P E Hintze, H S Shulman. High-temperature microwave dielectric properties and processing of JSC-1AC lunar simulant. Journal of Aerospace Engineering, 2013, 26( 4): 874– 881
https://doi.org/10.1061/(ASCE)AS.1943-5525.0000179
21 V K Balla, L B Roberson, G W O’Connor, S Trigwell, S Bose, A Bandyopadhyay. First demonstration on direct laser fabrication of lunar regolith parts. Rapid Prototyping Journal, 2012, 18( 6): 451– 457
https://doi.org/10.1108/13552541211271992
22 A Goulas, D S Engstrøm, R J Friel, R A Harris. Investigating the additive manufacture of extra-terrestrial materials. In: Proceedings of the 27th Annual International Solid Freeform Fabrication (SFF) Symposium—An Additive Manufacturing Conference. Austin: Laboratory for Freeform Fabrication and University of Texas at Austin, 2016, 2271– 2281
23 L Song, J Xu, H Tang, S Q Fan, J Z Liu, X Y Li, J Q Liu. Research progress of simulated lunar soil molding. Acta Mineralogica Sinica, 2020, 40(1): 47– 57 (in Chinese)
24 H A Toutanji, S Evans, R N Grugel. Performance of lunar sulfur concrete in lunar environments. Construction & Building Materials, 2012, 29 : 444– 448
https://doi.org/10.1016/j.conbuildmat.2011.10.041
25 A E Jakus, K D Koube, N R Geisendorfer, R N Shah. Robust and elastic lunar and Martian structures from 3D-printed regolith inks. Scientific Reports, 2017, 7 : 44931
https://doi.org/10.1038/srep44931
26 H Toutanji, B Glenn-Loper, B Schrayshuen. Strength and durability performance of waterless lunar concrete. In: Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 2005, AIAA 2005– 1436
27 M Liu, W Z Tang, W Y Duan, S Li, R Dou, G Wang, B S Liu, L Wang. Digital light processing of lunar regolith structures with high mechanical properties. Ceramics International, 2019, 45( 5): 5829– 5836
https://doi.org/10.1016/j.ceramint.2018.12.049
28 G Cesaretti, E Dini, X D Kestelier, V Colla, L Pambaguian. Building components for an outpost on the lunar soil by means of a novel 3D printing technology. Acta Astronautica, 2014, 93 : 430– 450
https://doi.org/10.1016/j.actaastro.2013.07.034
29 A Meurisse, A Makaya, C Willsch, M Sperl. Solar 3D printing of lunar regolith. Acta Astronautica, 2018, 152 : 800– 810
https://doi.org/10.1016/j.actaastro.2018.06.063
30 G Wang, W Zhao, Y F Liu, T J Cheng. Review of space manufacturing technique and developments. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2020, 50(4): 047006 (in Chinese)
31 T Prater, N Werkheiser, F Ledbetter, D Timucin, K Wheeler, M Snyder. 3D printing in zero G technology demonstration mission: complete experimental results and summary of related material modeling efforts. The International Journal of Advanced Manufacturing Technology, 2019, 101( 1–4): 391– 417
https://doi.org/10.1007/s00170-018-2827-7
32 B Reitz, C Lotz, N Gerdes, S Linke, E Olsen, K Pflieger, S Sohrt, M Ernst, P Taschner, J Neumann, E Stoll, L Overmeyer. Additive manufacturing under lunar gravity and microgravity. Microgravity Science and Technology, 2021, 33( 25): 1– 12
https://doi.org/10.1007/s12217-021-09878-4
33 M Fateri, A Gebhardt. Process parameters development of selective laser melting of lunar regolith for on-site manufacturing applications. International Journal of Applied Ceramic Technology, 2015, 12( 1): 46– 52
https://doi.org/10.1111/ijac.12326
34 S Q Yuan, C K Chua, K Zhou, J M Bai, J Wei. Dynamic mechanical behaviors of laser sintered polyurethane incorporated with mwcnts. In: Proceedings of the 2nd International Conference on Progress in Additive Manufacturing (Pro-AM 2016). Singapore: Nanyang Technological University, 2016, 361– 366
https://doi.org/10.3850/2424-8967V02-076
35 J Li, S Q Yuan, J H Zhu, S Y Li, W H Zhang. Numerical model and experimental validation for laser sinterable semi-crystalline polymer: shrinkage and warping. Polymers, 2020, 12( 6): 1373
https://doi.org/10.3390/polym12061373
36 S Q Yuan, J Li, X L Yao, J H Zhu, X J Gu, T Gao, Y J Xu, W H Zhang. Intelligent optimization system for powder bed fusion of processable thermoplastics. Additive Manufacturing, 2020, 34 : 101182
https://doi.org/10.1016/j.addma.2020.101182
37 S Q Yuan, S Y Li, J H Zhu, Y L Tang. Additive manufacturing of polymeric composites from material processing to structural design. Composites Part B: Engineering, 2021, 219 : 108903
https://doi.org/10.1016/j.compositesb.2021.108903
38 Y Liu, L A Taylor. Characterization of lunar dust and a synopsis of available lunar simulants. Planetary and Space Science, 2011, 59( 14): 1769– 1783
https://doi.org/10.1016/j.pss.2010.11.007
39 Y C Zheng, S J Wang, Z Y Ouyang, Y L Zou, J Z Liu, C L Li, X Y Li, J M Feng. CAS-1 lunar soil simulant. Advances in Space Research, 2009, 43( 3): 448– 454
https://doi.org/10.1016/j.asr.2008.07.006
40 H Tang, X Y Li, S S Zhang, S J Wang, J Z Liu, S J Li, Y Li, Y X Wu. A lunar dust simulant: CLDS-i. Advances in Space Research, 2017, 59( 4): 1156– 1160
https://doi.org/10.1016/j.asr.2016.11.023
41 L Sibille, P Carpenter, R Schlagheck, R A French. Lunar Regolith Simulant Materials: Recommendations for Standardization, Production, and Usage. NASA Technical Reports NASA/TP-2006–214605, 2006
42 S J Indyk, H Benaroya. A structural assessment of unrefined sintered lunar regolith simulant. Acta Astronautica, 2017, 140 : 517– 536
https://doi.org/10.1016/j.actaastro.2017.09.018
43 T Gualtieri, A Bandyopadhyay. Compressive deformation of porous lunar regolith. Materials Letters, 2015, 143 : 276– 278
https://doi.org/10.1016/j.matlet.2014.11.153
44 S Y Li, S Q Yuan, J H Zhu, C Wang, J Li, W H Zhang. Additive manufacturing-driven design optimization: building direction and structural topology. Additive Manufacturing, 2020, 36 : 101406
https://doi.org/10.1016/j.addma.2020.101406
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed