Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2022, Vol. 17 Issue (2) : 16    https://doi.org/10.1007/s11465-022-0672-8
RESEARCH ARTICLE
Thermal analysis of lubricated three-dimensional contact bodies considering interface roughness
Jiqiang WU1, Liqin WANG1,2, Zhen LI1, Peng LIU1, Chuanwei ZHANG1
1. MIIT Key Laboratory of Aerospace Bearing Technology and Equipment, Harbin Institute of Technology, Harbin 150001, China
2. State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150080, China
 Download: PDF(6575 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Surface roughness and thermal action are of remarkable importance in the lubrication performance of mechanical components, especially in extreme conditions. However, available studies mainly focus on the full-film lubrication conditions without considering temperature rise and real 3D surface roughness due to the complexity of surface topography and temperature characteristics. Moreover, studies on the interfacial thermal behaviors of 3D rough surface lubricated contact in an extended range of working conditions remain limited. In this paper, a deterministic mixed thermal elastohydrodynamic lubrication model considering real 3D surface roughness and thermal effects is proposed. In this model, pressure and temperature are coupled with each other, the computation of elastic deformation is accelerated through the discrete convolution and fast Fourier transform method, the temperature field is calculated with the column sweeping technique, and the semi-system method is introduced to improve convergence and numerical stability under severe conditions. The model is validated by comparing its results with available published numerical and experimental results. The thermal behaviors of the contact interface are studied in a wide range of working conditions. The influences of surface roughness and thermal effect on lubrication performance are revealed. The results show that the proposed model can be used as a powerful analysis tool for lubrication performance and temperature prediction in various heavy-load, high-speed lubricated components over a wide range of lubrication conditions.

Keywords thermal elastohydrodynamic lubrication      surface roughness effect      thermal effect      temperature characteristics      severe conditions     
Corresponding Author(s): Liqin WANG   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Just Accepted Date: 31 March 2022   Issue Date: 16 June 2022
 Cite this article:   
Jiqiang WU,Liqin WANG,Zhen LI, et al. Thermal analysis of lubricated three-dimensional contact bodies considering interface roughness[J]. Front. Mech. Eng., 2022, 17(2): 16.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-022-0672-8
https://academic.hep.com.cn/fme/EN/Y2022/V17/I2/16
Fig.1  Geometry and computational domain of mixed TEHL in an elliptical contact.
Fig.2  Numerical calculation flowchart for solving the mixed TEHL problem.
Parameter Value
Elastic modulus of ball 206 GPa
Elastic modulus of disc 75 GPa
Poisson’s ratio of ball 0.3
Poisson’s ratio of disc 0.22
Specific heat of ball 470 J/(kg·K)
Specific heat of disc 840 J/(kg·K)
Specific heat of lubricant 2000 J/(kg·K)
Density of ball 7850 kg/m3
Density of disc 2500 kg/m3
Density of lubricant 876 kg/m3
Thermal conductivity of ball 46 W/(m·K)
Thermal conductivity of disc 0.78 W/(m·K)
Thermal conductivity of lubricant 0.14 W/(m·K)
Ambient viscosity of lubricant 1.315 Pa·s
Viscosity–pressure coefficient 24 GPa?1
Ambient temperature 20 °C
Tab.1  Contacting bodies and lubricant properties parameter for the validation case
Fig.3  Present simulations compared with the numerical results from Ref. [46]: (a) centerline pressure and film thickness distributions, (b) centerline temperature distributions.
Fig.4  Comparison of central film thickness between simulations and experimental data in Ref. [47] at different entrainment velocities.
Applied load, w/N Maximum Hertzian pressure, ph/GPa Hertzian contact radius, a/mm
170 1.0 0.201
580 1.5 0.302
1360 2.0 0.402
2650 2.5 0.502
4600 3.0 0.603
Tab.2  Parameters of Hertzian contact at different applied loads
Parameter Value
Elastic modulus of solids 206 GPa
Poisson’s ratio of solids 0.3
Density of solids 7850 kg/m3
Density of lubricant 971.2 kg/m3
Specific heat of solids 470 J/(kg·K)
Specific heat of lubricant 1910 J/(kg·K)
Ambient viscosity of lubricant 0.0246 Pa·s
Viscosity–pressure coefficient 18.458 GPa?1
Viscosity–temperature coefficient 0.032 K?1
Thermal conductivity of solids 46 W/(m·K)
Thermal conductivity of lubricant 0.152 W/(m·K)
Thermal expansion coefficient of lubricant 0.000788 K?1
Boundary lubrication friction coefficient 0.115
Ambient temperature 40 °C
Tab.3  Properties of contacting bodies and lubricant
Fig.5  Effect of SRR on film thickness and pressure under different load levels when ue = 20 m/s: (a) central film thickness, (b) minimum film thickness, (c) maximum pressure, and (d) centerline film thickness and pressure distributions for ph = 2 GPa.
Fig.6  Effect of SRR on temperature when ue = 20 m/s and ph = 2 GPa: (a) central film temperature distributions in the rolling direction at y = 0, (b) maximum temperature, and (c) temperature distributions in the x-o-z cross section at y = 0.
Fig.7  Effect of load on temperature when ue = 20 m/s and SRR = 0.02: (a) central film temperature distributions in the rolling direction at y = 0, (b) maximum temperature, and (c) temperature distributions in the x-o-z cross section at y = 0.
Fig.8  3D roughness profiles of (a) surface 1 and (b) surface 2. (c) Sketch of mesh discretization in the model.
Fig.9  Comparison of centerline pressure, film thickness, and central film temperature distribution between rough TEHL and smooth TEHL at different SRRs when ue = 20 m/s and ph = 2 GPa.
Fig.10  Comparison of the results between rough TEHL and smooth TEHL at different loads when ue = 20 m/s and SRR = 0.02: (a) maximum pressure and (b) minimum film thickness.
Fig.11  Variations of film thickness, pressure, and temperature distributions at different entrainment velocities when SRR = 0.02 and ph = 2 GPa.
Fig.12  Effect of entrainment velocity on lubrication performance when SRR = 0.02 and ph = 2 GPa: (a) central film temperature distributions in the rolling direction at y = 0 and (b) maximum temperature.
Fig.13  Comparison of the results between thermal and isothermal models at different entrainment velocities: (a) average film thickness and (b) maximum pressure.
Fig.14  Comparison of pressure and film thickness profiles at y = 0 between thermal and isothermal models with different entrainment velocities when SRR = 0.02 and ph = 2 GPa.
a, b Semi axis Hertzian contact ellipse in the x and y directions, respectively
c1, c2 Specific heats of solids 1 and 2, respectively
cf Specific heat of lubricant
d Thickness of the temperature calculation domain of solids
E? Effectively elastic modulus
fb Boundary lubrication friction coefficient
h Film thickness
h0(t) Rigid body central distance
ha Average film thickness
hb Boundary film thickness
hcen Central film thickness
hmin Minimum film thickness
k Hertzian contact ellipticity
k1, k2 Thermal conductivities of solids 1 and 2, respectively
kf Thermal conductivity of lubricant
p Pressure
ph Maximum Hertzian pressure
q Lubricant velocity in the z direction
Rx, Ry Equivalent radius of contact surfaces in the x and y directions, respectively
s0 Coefficient for Roelands equation
s1(x, y), s2(x, y) Discretized roughness height data matrix of surfaces 1 and 2, respectively
SRR Slide–roll ratio
t Time
Δt Dimensionless time step length
T Temperature
T0 Ambient temperature
Tg Temperature on the surface of glass
Tm Mean temperature of oil film
Tmid Central film temperature
Ts Temperature on the surface of steel
Txoz Temperature in the x-o-z cross section
u Lubricant velocity in the x direction
u1, u2 Velocities of surfaces 1 and 2, respectively
ue Entrainment velocity
v Lubricant velocity in the y direction
Ve(x, y, t) Elastic deformation
w Applied load
Wc Contact load ratio
x Coordinate in entrainment direction
xin, xout Inlet and outlet edges in the x direction, respectively
ΔX Dimensionless mesh size in the x direction
y Coordinate perpendicular to entrainment direction
yin, yout Inlet and outlet edges in the y direction, respectively
z Vertical coordinate across oil film
z0 Coefficient for Roelands equation
z1, z2 Vertical coordinates for solids 1 and 2, respectively
α Viscosity–pressure coefficient
β Thermal expansion coefficient of lubricant
γ Viscosity–temperature coefficient
δ1(x, y, t), δ2(x, y, t) Roughness heights of surfaces 1 and 2, respectively
εp, εw, εT Convergence factors of pressure, load, and temperature, respectively
η Lubricant viscosity
η0 Ambient viscosity of lubricant
η* Lubricant effective viscosity
ξ x coordinate of pressure when calculating deformation
ρ Lubricant density
ρ0 Ambient density of lubricant
ρ1, ρ2 Densities of solids 1 and 2, respectively
? y coordinate of pressure when calculating deformation
τ Shear stress
τ0 Characteristic shear stress
  
1 H S Cheng , B Sternlicht . A numerical solution for the pressure, temperature, and film thickness between two infinitely long, lubricated rolling and sliding cylinders, under heavy loads. Journal of Basic Engineering, 1965, 87( 3): 695– 704
https://doi.org/10.1115/1.3650647
2 D Zhu , S Z Wen . A full numerical solution for the thermoelastohydrodynamic problem in elliptical contacts. Journal of Tribology, 1984, 106( 2): 246– 254
https://doi.org/10.1115/1.3260895
3 K H Kim , F Sadeghi . Three-dimensional temperature distribution in EHD lubrication: part I-circular contact. Journal of Tribology, 1992, 114( 1): 32– 41
https://doi.org/10.1115/1.2920864
4 P Yang , S Qu , M Kaneta , H Nishikawa . Formation of steady dimples in point TEHL contacts. Journal of Tribology, 2001, 123( 1): 42– 49
https://doi.org/10.1115/1.1332399
5 F Guo , P R Yang , S Y Qu . On the theory of thermal elastohydrodynamic lubrication at high slide-roll ratios-circular glass-steel contact solution at opposite sliding. Journal of Tribology, 2001, 123( 4): 816– 821
https://doi.org/10.1115/1.1330739
6 M Kaneta , P Yang . Formation mechanism of steady multi-dimples in thermal EHL point contacts. Journal of Tribology, 2003, 125( 2): 241– 251
https://doi.org/10.1115/1.1506318
7 H J Kim , P Ehret , D Dowson , C M Taylor . Thermal elastohydrodynamic analysis of circular contacts part 2: non-Newtonian model. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2001, 215( 4): 353– 362
https://doi.org/10.1243/1350650011543592
8 X L Liu , M Jiang , P R Yang , M Kaneta . Non-Newtonian thermal analyses of point EHL contacts using the Eyring model. Journal of Tribology, 2005, 127( 1): 70– 81
https://doi.org/10.1115/1.1843161
9 J Cui , P Yang , Z M Jin , D Dowson . Transient elastohydrodynamic analysis of elliptical contacts. Part 3: non-Newtonian lubricant solution under isothermal and thermal conditions. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2007, 221( 1): 63– 73
https://doi.org/10.1243/13506501JET165
10 H J Liu , C C Zhu , Z L Gu , Z J Wang , J Y Tang . Effect of thermal properties of a coated elastohydrodynamic lubrication line contact under various slide-to-roll ratios. Journal of Heat Transfer, 2017, 139( 7): 074505
https://doi.org/10.1115/1.4036078
11 W Habchi . On the negative influence of roller-end axial profiling on friction in thermal elastohydrodynamic lubricated finite line contacts. Journal of Tribology, 2020, 142( 11): 111601
https://doi.org/10.1115/1.4047301
12 T He , Q J Wang , X Zhang , Y C Liu , Z Li , H J Kim , S Pack . Modeling thermal-visco-elastohydrodynamic lubrication (TVEHL) interfaces of polymer-based materials. Tribology International, 2021, 154 : 106691
https://doi.org/10.1016/j.triboint.2020.106691
13 J X Zhao , F Sadeghi , M H Hoeprich . Analysis of EHL circular contact start up: part II—surface temperature rise model and results. Journal of Tribology, 2001, 123( 1): 75– 82
https://doi.org/10.1115/1.1332395
14 H B Zhang , W Z Wang , S G Zhang , Z Q Zhao . Semi-analytical solution of three-dimensional steady state thermoelastic contact problem of multilayered material under friction heating. International Journal of Thermal Sciences, 2018, 127 : 384– 399
https://doi.org/10.1016/j.ijthermalsci.2018.02.006
15 W Y Yang , Q H Zhou , Y Y Huang , J X Wang , X Q Jin , L M Keer . A thermoelastic contact model between a sliding ball and a stationary half space distributed with spherical inhomogeneities. Tribology International, 2019, 131 : 33– 44
https://doi.org/10.1016/j.triboint.2018.10.023
16 Y G Zhang , W Z Wang , H Liang , Z Q Zhao . Layered oil slip model for investigation of film thickness behaviours at high speed conditions. Tribology International, 2019, 131 : 137– 147
https://doi.org/10.1016/j.triboint.2018.10.035
17 K L Johnson , J A Greenwood , S Y Poon . A simple theory of asperity contact in elastohydro-dynamic lubrication. Wear, 1972, 19( 1): 91– 108
https://doi.org/10.1016/0043-1648(72)90445-0
18 N Patir , H S Cheng . An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication. Journal of Lubrication Technology, 1978, 100( 1): 12– 17
https://doi.org/10.1115/1.3453103
19 D Zhu , H S Cheng . Effect of surface roughness on the point contact EHL. Journal of Tribology, 1988, 110( 1): 32– 37
https://doi.org/10.1115/1.3261571
20 C H Venner , W E ten Napel . Surface roughness effects in an EHL line contact. Journal of Tribology, 1992, 114( 3): 616– 622
https://doi.org/10.1115/1.2920926
21 L Chang , C Cusano , T F Conry . Effects of lubricant rheology and kinematic conditions on micro-elastohydrodynamic lubrication. Journal of Tribology, 1989, 111( 2): 344– 351
https://doi.org/10.1115/1.3261920
22 C C Kweh , M J Patching , H P Evans , R W Snidle . Simulation of elastohydrodynamic contacts between rough surfaces. Journal of Tribology, 1992, 114( 3): 412– 419
https://doi.org/10.1115/1.2920900
23 X Ai . Numerical analyses of elastohydrodynamically lubricated line and point contacts with rough surfaces by using semi-system and multigrid methods. Dissertation for the Doctoral Degree. Evanston: Northwestern University, 1993, 56– 82
24 Y Z Hu , D Zhu . A full numerical solution to the mixed lubrication in point contacts. Journal of Tribology, 2000, 122( 1): 1– 9
https://doi.org/10.1115/1.555322
25 T He , N Ren , D Zhu , J X Wang . Plasto-elastohydrodynamic lubrication in point contacts for surfaces with three-dimensional sinusoidal waviness and real machined roughness. Journal of Tribology, 2014, 136( 3): 031504
https://doi.org/10.1115/1.4027478
26 T He , D Zhu , C J Yu , Q J Wang . Mixed elastohydrodynamic lubrication model for finite roller-coated half space interfaces. Tribology International, 2019, 134 : 178– 189
https://doi.org/10.1016/j.triboint.2019.02.001
27 T He , Z J Wang , J Q Wu . Effect of imperfect coating on the elastohydrodynamic lubrication: dislocation-like and force-like coating-substrate interfaces. Tribology International, 2020, 143 : 106098
https://doi.org/10.1016/j.triboint.2019.106098
28 T He , Q J Wang , X Zhang , Y C Liu , Z Li , H J Kim , S Pack . Visco-elastohydrodynamic lubrication of layered materials with imperfect layer-substrate interfaces. International Journal of Mechanical Sciences, 2021, 189 : 105993
https://doi.org/10.1016/j.ijmecsci.2020.105993
29 W Pu , J X Wang , R S Yang , D Zhu . Mixed elastohydrodynamic lubrication with three-dimensional machined roughness in spiral bevel and hypoid gears. Journal of Tribology, 2015, 137( 4): 041503
https://doi.org/10.1115/1.4030185
30 Z Z Wang , W Pu , Y Zhang , W Cao . Transient behaviors of friction, temperature and fatigue in different contact trajectories for spiral bevel gears. Tribology International, 2020, 141 : 105965
https://doi.org/10.1016/j.triboint.2019.105965
31 L Gan , K Xiao , J X Wang , W Pu , W Cao . A numerical method to investigate the temperature behavior of spiral bevel gears under mixed lubrication condition. Applied Thermal Engineering, 2019, 147 : 866– 875
https://doi.org/10.1016/j.applthermaleng.2018.10.125
32 S Chen , N Yin , X J Cai , Z N Zhang . Iteration framework for solving mixed lubrication computation problems. Frontiers of Mechanical Engineering, 2021, 16( 3): 635– 648
https://doi.org/10.1007/s11465-021-0632-8
33 W Z Wang , Y C Liu , H Wang , Y Z Hu . A computer thermal model of mixed lubrication in point contacts. Journal of Tribology, 2004, 126( 1): 162– 170
https://doi.org/10.1115/1.1631012
34 W Z Wang , Y Z Hu , Y C Liu , H Wang . Deterministic solutions and thermal analysis for mixed lubrication in point contacts. Tribology International, 2007, 40( 4): 687– 693
https://doi.org/10.1016/j.triboint.2005.11.002
35 X L Yan , Y Y Zhang , G X Xie , F Qin , X W Zhang . Effects of spinning on the mixed thermal elastohydrodynamic lubrication and fatigue life in point contacts. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2019, 233( 12): 1820– 1832
https://doi.org/10.1177/1350650119847404
36 X P Wang , Y C Liu , D Zhu . Numerical solution of mixed thermal elastohydrodynamic lubrication in point contacts with three-dimensional surface roughness. Journal of Tribology, 2017, 139( 1): 011501
https://doi.org/10.1115/1.4032963
37 D Zhu . On some aspects of numerical solutions of thin-film and mixed elastohydrodynamic lubrication. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2007, 221( 5): 561– 579
https://doi.org/10.1243/13506501JET259
38 H J Kim , P Ehret , D Dowson , C M Taylor . Thermal elastohydrodynamic analysis of circular contacts part 1: Newtonian model. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2001, 215( 4): 339– 352
https://doi.org/10.1243/1350650011543583
39 C J A Roelands , J C Vlugter , H I Waterman . The viscosity-temperature-pressure relationship of lubricating oils and its correlation with chemical constitution. Journal of Basic Engineering, 1963, 85( 4): 601– 607
https://doi.org/10.1115/1.3656919
40 D Dowson G R Higginson. Elasto-hydrodynamic lubrication: the fundamentals of roller and gear lubrication. Oxford: Pergamon Press, 1966
41 J L Cui , P R Yang . Transient thermo-EHL theory of point contact—the process of a bump on the fast surface passing a bump on the slower surface. Tribology Series, 2003, 43 : 253– 261
https://doi.org/10.1016/S0167-8922(03)80053-6
42 X J Shi , J Q Wu , B Zhao , X Ma , X Q Lu . Mixed thermal elastohydrodynamic lubrication analysis with dynamic performance of aero ball bearing during start-up and shut-down. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2020, 234( 6): 873– 886
https://doi.org/10.1177/1350650119900401
43 S B Liu , Q Wang . Studying contact stress fields caused by surface tractions with a discrete convolution and fast Fourier transform algorithm. Journal of Tribology, 2002, 124( 1): 36– 45
https://doi.org/10.1115/1.1401017
44 S B Liu , Q Wang , G Liu . A versatile method of discrete convolution and FFT (DC-FFT) for contact analyses. Wear, 2000, 243( 1−2): 101– 111
https://doi.org/10.1016/S0043-1648(00)00427-0
45 F Guo , P Yang , P L Wong . On the thermal elastohydrodynamic lubrication in opposite sliding circular contacts. Tribology International, 2001, 34( 7): 443– 452
https://doi.org/10.1016/S0301-679X(01)00038-X
46 M Kaneta , P Yang , C J Hooke . Effects of the thermal conductivity of contact materials on elastohydrodynamic lubrication characteristics. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2010, 224( 12): 2577– 2587
https://doi.org/10.1243%2F09544062JMES2146
47 H Liang , D Guo , T Reddyhoff , H Spikes , J B Luo . Influence of thermal effects on elastohydrodynamic (EHD) lubrication behavior at high speeds. Science China Technological Sciences, 2015, 58( 3): 551– 558
https://doi.org/10.1007/s11431-014-5564-7
48 T He , D Zhu , J X Wang , Q J Wang . Experimental and numerical investigations of the stribeck curves for lubricated counterformal contacts. Journal of Tribology, 2017, 139( 2): 021505
https://doi.org/10.1115/1.4034051
49 H Y Sun P R Yang X Y Chen. Study on abnormal temperature field of slide/roll contact under elastohydrodynamic lubrication. Tribology, 2004, 24(1): 66− 69 (in Chinese)
50 D Zhu , Y C Liu , Q Wang . On the numerical accuracy of rough surface EHL solution. Tribology Transactions, 2014, 57( 4): 570– 580
https://doi.org/10.1080/10402004.2014.886349
51 Y G Zhang , W Z Wang , S G Zhang , Z Q Zhao . Experimental study of EHL film thickness behaviour at high speed in ball-on-ring contacts. Tribology International, 2017, 113 : 216– 223
https://doi.org/10.1016/j.triboint.2017.02.040
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed