Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2022, Vol. 17 Issue (2) : 28    https://doi.org/10.1007/s11465-022-0684-4
REVIEW ARTICLE
Review of human–robot coordination control for rehabilitation based on motor function evaluation
Di SHI1, Liduan WANG2, Yanqiu ZHANG2, Wuxiang ZHANG1,3(), Hang XIAO1, Xilun DING1,3
1. School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
2. School of Rehabilitation Medicine, Weifang Medical University, Weifang 261053, China
3. Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 100191, China
 Download: PDF(2037 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

As a wearable and intelligent system, a lower limb exoskeleton rehabilitation robot can provide auxiliary rehabilitation training for patients with lower limb walking impairment/loss and address the existing problem of insufficient medical resources. One of the main elements of such a human–robot coupling system is a control system to ensure human–robot coordination. This review aims to summarise the development of human–robot coordination control and the associated research achievements and provide insight into the research challenges in promoting innovative design in such control systems. The patients’ functional disorders and clinical rehabilitation needs regarding lower limbs are analysed in detail, forming the basis for the human–robot coordination of lower limb rehabilitation robots. Then, human–robot coordination is discussed in terms of three aspects: modelling, perception and control. Based on the reviewed research, the demand for robotic rehabilitation, modelling for human–robot coupling systems with new structures and assessment methods with different etiologies based on multi-mode sensors are discussed in detail, suggesting development directions of human–robot coordination and providing a reference for relevant research.

Keywords human–robot coupling      lower limb rehabilitation      exoskeleton robot      motor assessment      dynamical model      perception     
Corresponding Author(s): Wuxiang ZHANG   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Just Accepted Date: 22 April 2022   Issue Date: 15 August 2022
 Cite this article:   
Di SHI,Liduan WANG,Yanqiu ZHANG, et al. Review of human–robot coordination control for rehabilitation based on motor function evaluation[J]. Front. Mech. Eng., 2022, 17(2): 28.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-022-0684-4
https://academic.hep.com.cn/fme/EN/Y2022/V17/I2/28
Fig.1  Simplified diagram for motor function assessments in rehabilitation. TUG: timed up and go, BBS: Berg balance scale, SPPB: short physical performance battery, 6MWT: 6-min walk test, IMU: inertia measurement unit, EMG: electromyography, EEG: electroencephalogram.
Fig.2  Partial objective evaluation for motor function assessment: (a) infrared motion capture (Motion Analysis, USA); (b) inertial measurement units (Noraxon, USA); (c) insole plantar pressure and measurement device (Novel, German); (d) force plate (AMTI, USA); and (e) electromyography sensor (Noraxon, USA).
Fig.3  Modelling of robot, human, and human–robot interaction. HRI: human–robot interaction, DOF: degree of freedom, SEA: serial elastic actuator.
Fig.4  Perception of robot, human, and human–robot interaction.
Control strategies Methods Features
Passive control Proportional?derivative (PD) control [79], computational torque control [62], variable structure control [80], impedance control [81], multiple input multiple output (MIMO) decoupling control [51] After a walk mode based on the sensors was selected, the participant initiated and propagated the programmed motions. The torque that the robot needs to apply to the human body is generally put into the dynamics equation as a disturbance term
Assist-as-needed control Force-field control (FFC) [5], moment-field control (MFC) [82], three-dimensional-force-field control (3D-FFC) [83] Using physical sensors for measurement and evaluation; that is, the actual position or attitude deviation measured by the sensor can obtain the corresponding adjustment force/torque to achieve impedance control based on the attitude deviation
Neuromuscular control [57] Capturing EMG signals to generate a synchronised and natural gait and achieve human–robot coordinated control
Force control Finite state machine [84] A finite state machine is used to indicate the intended option of a series of manoeuvres. The intended manoeuvre of the user based on the provided inputs is determined. Each state is defined by a set of joint angle trajectories, which are enforced by position control loops
EMG-based control [85] Human joint torque is estimated based on EMG signals to generate virtual torque for the control of the motors
Tab.1  Overview of control methods
COM Centre of mass
COP Centre of pressure
DOF Degree of freedom
EEG Electroencephalography
EMG Electromyography
FFC Force-field control
GRF Ground reaction force
HRI Human–robot interaction
IMU Inertial measurement unit
MFC Moment-field control
MIMO Multiple input multiple output
PD Proportional?derivative
SCI Spinal cord injury
SEA Serial elastic actuator
TUG Timed up and go
  
1 A J Ijspeert. Biorobotics: using robots to emulate and investigate agile locomotion. Science, 2014, 346( 6206): 196– 203
https://doi.org/10.1126/science.1254486
2 D Shi, W X Zhang, W Zhang, X L Ding. A review on lower limb rehabilitation exoskeleton robots. Chinese Journal of Mechanical Engineering, 2019, 32( 1): 74
https://doi.org/10.1186/s10033-019-0389-8
3 A M Dollar, H Herr. Lower extremity exoskeletons and active orthoses: challenges and state-of-the-art. IEEE Transactions on Robotics, 2008, 24( 1): 144– 158
https://doi.org/10.1109/TRO.2008.915453
4 K van Kammen, A M Boonstra, L H V van der Woude, C Visscher, H A Reinders-Messelink, R den Otter. Lokomat guided gait in hemiparetic stroke patients: the effects of training parameters on muscle activity and temporal symmetry. Disability and Rehabilitation, 2020, 42( 21): 2977– 2985
https://doi.org/10.1080/09638288.2019.1579259
5 R Hidayah, L Bishop, X Jin, S Chamarthy, J Stein, S K Agrawal. Gait adaptation using a cable-driven active leg exoskeleton (C-ALEX) with post-stroke participants. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28( 9): 1984– 1993
https://doi.org/10.1109/TNSRE.2020.3009317
6 J Meuleman, E van Asseldonk, G van Oort, H Rietman, H van der Kooij. LOPES II—design and evaluation of an admittance controlled gait training robot with shadow-leg approach. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 24( 3): 352– 363
https://doi.org/10.1109/TNSRE.2015.2511448
7 R Huang, H Cheng, J Qiu, J W Zhang. Learning physical human–robot interaction with coupled cooperative primitives for a lower exoskeleton. IEEE Transactions on Automation Science and Engineering, 2019, 16( 4): 1566– 1574
https://doi.org/10.1109/TASE.2018.2886376
8 L B Zhou, W H Chen, J H Wang, S P Bai, H Y Yu, Y P Zhang. A novel precision measuring parallel mechanism for the closed-loop control of a biologically inspired lower limb exoskeleton. IEEE/ASME Transactions on Mechatronics, 2018, 23( 6): 2693– 2703
https://doi.org/10.1109/TMECH.2018.2872011
9 D Shi, W X Zhang, W Zhang, L H Ju, X L Ding. Human-centred adaptive control of lower limb rehabilitation robot based on human–robot interaction dynamic model. Mechanism and Machine Theory, 2021, 162: 104340
https://doi.org/10.1016/j.mechmachtheory.2021.104340
10 Y Long, Z J Du, C F Chen, W D Wang, L He, X W Mao, G Q Xu, G Y Zhao, X Q Li, W Dong. Development and analysis of an electrically actuated lower extremity assistive exoskeleton. Journal of Bionics Engineering, 2017, 14( 2): 272– 283
https://doi.org/10.1016/S1672-6529(16)60397-9
11 D Wei, Z J Li, Q Wei, H Su, B Song, W He, J Q Li. Human-in-the-loop control strategy of unilateral exoskeleton robots for gait rehabilitation. IEEE Transactions on Cognitive and Developmental Systems, 2021, 13( 1): 57– 66
https://doi.org/10.1109/TCDS.2019.2954289
12 Y Ding, M Kim, S Kuindersma, C J Walsh. Human-in-the-loop optimization of hip assistance with a soft exosuit during walking. Science Robotics, 2018, 3( 15): eaa r5438
https://doi.org/10.1126/scirobotics.aar5438
13 H Ding, X J Yang, N N Zheng, M Li, Y N Lai, H Wu. Tri-co robot: a Chinese robotic research initiative for enhanced robot interaction capabilities. National Science Review, 2018, 5( 6): 799– 801
https://doi.org/10.1093/nsr/nwx148
14 W Meng, Q Liu, Z D Zhou, Q S Ai, B Sheng, S Q Xie. Recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation. Mechatronics, 2015, 31: 132– 145
https://doi.org/10.1016/j.mechatronics.2015.04.005
15 B Kalita, J Narayan, S K Dwivedy. Development of active lower limb robotic-based orthosis and exoskeleton devices: a systematic review. International Journal of Social Robotics, 2021, 13( 4): 775– 793
https://doi.org/10.1007/s12369-020-00662-9
16 J M Zhou, S Yang, Q Xue. Lower limb rehabilitation exoskeleton robot: a review. Advances in Mechanical Engineering, 2021, 13( 4): 16878140211011862
https://doi.org/10.1177/16878140211011862
17 T F Yan, M Cempini, C M Oddo, N Vitiello. Review of assistive strategies in powered lower-limb orthoses and exoskeletons. Robotics and Autonomous Systems, 2015, 64: 120– 136
18 R Baud, A R Manzoori, A Ijspeert, M Bouri. Review of control strategies for lower-limb exoskeletons to assist gait. Journal of NeuroEngineering and Rehabilitation, 2021, 18( 1): 119
https://doi.org/10.1186/s12984-021-00906-3
19 D P Ferris, G S Sawicki, M A Daley. A physiologist’s perspective on robotic exoskeletons for human locomotion. International Journal of Humanoid Robotics, 2007, 4( 3): 507– 528
https://doi.org/10.1142/S0219843607001138
20 R W Bohannon, K Schaubert. Long-term reliability of the timed up-and-go test among community-dwelling elders. Journal of Physical Therapy Science, 2005, 17( 2): 93– 96
https://doi.org/10.1589/jpts.17.93
21 D Podsiadlo, S Richardson. The timed “up & go”: a test of basic functional mobility for frail elderly persons. Journal of the American Geriatrics Society, 1991, 39( 2): 142– 148
https://doi.org/10.1111/j.1532-5415.1991.tb01616.x
22 J M Guralnik, E M Simonsick, L Ferrucci, R J Glynn, L F Berkman, D G Blazer, P A Scherr, R B Wallace. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. Journal of Gerontology, 1994, 49( 2): M85– M94
https://doi.org/10.1093/geronj/49.2.M85
23 K Berg, S Wood-Dauphine, J I, Williams D Gayton. Measuring balance in the elderly: preliminary development of an instrument. Physiotherapy Canada, 1989, 41( 6): 304– 311
https://doi.org/10.3138/ptc.41.6.304
24 D A Ganz, Y R Bao, P G Shekelle, L Z Rubenstein. Will my patient fall? Journal of the American Medical Association, 2007, 297( 1): 77– 86
https://doi.org/10.1001/jama.297.1.77
25 T K M Lee, M Belkhatir, S Sanei. A comprehensive review of past and present vision-based techniques for gait recognition. Multimedia Tools and Applications, 2014, 72( 3): 2833– 2869
https://doi.org/10.1007/s11042-013-1574-x
26 C Scheffer, T Cloete. Inertial motion capture in conjunction with an artificial neural network can differentiate the gait patterns of hemiparetic stroke patients compared with able-bodied counterparts. Computer Methods in Biomechanics and Biomedical Engineering, 2012, 15( 3): 285– 294
https://doi.org/10.1080/10255842.2010.527836
27 A R Den Otter, A C H Geurts, T Mulder, J Duysens. Abnormalities in the temporal patterning of lower extremity muscle activity in hemiparetic gait. Gait & Posture, 2007, 25( 3): 342– 352
https://doi.org/10.1016/j.gaitpost.2006.04.007
28 N T Pickle, S M Shearin, N P Fey. Dynamic neural network approach to targeted balance assessment of individuals with and without neurological disease during non-steady-state locomotion. Journal of NeuroEngineering and Rehabilitation, 2019, 16( 1): 88
https://doi.org/10.1186/s12984-019-0550-8
29 E Swinnen, D Beckwée, R Meeusen, J P Baeyens, E Kerckhofs. Does robot-assisted gait rehabilitation improve balance in stroke patients? A systematic review. Topics in Stroke Rehabilitation, 2014, 21( 2): 87– 100
https://doi.org/10.1310/tsr2102-87
30 J H Park, Y Kim, K J Lee, Y S Yoon, S H Kang, H Kim, H S Park. Artificial neural network learns clinical assessment of spasticity in modified ashworth scale. Archives of Physical Medicine and Rehabilitation, 2019, 100( 10): 1907– 1915
https://doi.org/10.1016/j.apmr.2019.03.016
31 D Pinto-Fernandez, D Torricelli, M D C Sanchez-Villamanan, F Aller, K Mombaur, R Conti, N Vitiello, J C Moreno, J L Pons. Performance evaluation of lower limb exoskeletons: a systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28( 7): 1573– 1583
https://doi.org/10.1109/TNSRE.2020.2989481
32 S S Galen, C J Clarke, D B Allan, B A Conway. A portable gait assessment tool to record temporal gait parameters in SCI. Medical Engineering & Physics, 2011, 33( 5): 626– 632
https://doi.org/10.1016/j.medengphy.2011.01.003
33 M H Granat, D J Maxwell, C J Bosch, A C B Ferguson, K R Lees, J C Barbenel. A body-worn gait analysis system for evaluating hemiplegic gait. Medical Engineering & Physics, 1995, 17( 5): 390– 394
https://doi.org/10.1016/1350-4533(95)97321-F
34 N Neckel, M Pelliccio, D Nichols, J Hidler. Quantification of functional weakness and abnormal synergy patterns in the lower limb of individuals with chronic stroke. Journal of NeuroEngineering and Rehabilitation, 2006, 3( 1): 17
https://doi.org/10.1186/1743-0003-3-17
35 N D Neckel, N Blonien, D Nichols, J Hidler. Abnormal joint torque patterns exhibited by chronic stroke subjects while walking with a prescribed physiological gait pattern. Journal of NeuroEngineering and Rehabilitation, 2008, 5( 1): 19
https://doi.org/10.1186/1743-0003-5-19
36 B H Hu, X F Zhang, J S Mu, M Wu, Z J Zhu, Z S Liu, Y Wang. Spasticity measurement based on the HHT marginal spectrum entropy of sEMG using a portable system: a preliminary study. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26( 7): 1424‒ 1434
https://doi.org/10.1109/TNSRE.2018.2838767
37 J P A Dewald, P S Pope, J D Given, T S Buchanan, W Z Rymer. Abnormal muscle coactivation patterns during isometric torque generation at the elbow and shoulder in hemiparetic subjects. Brain, 1995, 118( 2): 495‒ 510
https://doi.org/10.1093/brain/118.2.495
38 M P Shestakov. Balance of a multijoint biomechanical system in natural and artificial environments: a simulation model. Journal of Physiological Anthropology, 2007, 26( 3): 419– 423
https://doi.org/10.2114/jpa2.26.419
39 K Kasaoka, Y Sankai. Predictive control estimating operator’s intention for stepping-up motion by exo-skeleton type power assist system HAL. In: Proceedings of 2001 IEEE/RSJ International Conference on Intelligent Robots & Systems. Maui: IEEE, 2001, 3: 1578– 1583
https://doi.org/doi: 10.1109/IROS.2001.977204
40 P Pei, Z C Pei, Z Y Tang, H Gu. Position tracking control of PMSM based on fuzzy PID-variable structure adaptive control. Mathematical Problems in Engineering, 2018, ( 1): 5794067
https://doi.org/10.1155/2018/5794067
41 D F Liu, Z Y Tang, Z C Pei. Variable structure compensation PID control of asymmetrical hydraulic cylinder trajectory tracking. Mathematical Problems in Engineering, 2015, ( 1): 890704
https://doi.org/10.1155/2015/890704
42 M M Zhang, S Q Xie, X L Li, G L Zhu, W Meng, X L Huang, A J Veale. Adaptive patient-cooperative control of a compliant ankle rehabilitation robot (CARR) with enhanced training safety. IEEE Transactions on Industrial Electronics, 2018, 65( 2): 1398– 1407
https://doi.org/10.1109/TIE.2017.2733425
43 Y X Shao, W X Zhang, Y J Su, X L Ding. Design and optimisation of load-adaptive actuator with variable stiffness for compact ankle exoskeleton. Mechanism and Machine Theory, 2021, 161: 104323
https://doi.org/10.1016/j.mechmachtheory.2021.104323
44 H Y Yu, S N Huang, G Chen, Y P Pan, Z Guo. Human–robot interaction control of rehabilitation robots with series elastic actuators. IEEE Transactions on Robotics, 2015, 31( 5): 1089– 1100
https://doi.org/10.1109/TRO.2015.2457314
45 W Zhang, W X Zhang, D Shi, X L Ding. Design of hip joint assistant asymmetric parallel mechanism and optimization of singularity-free workspace. Mechanism and Machine Theory, 2018, 122: 389– 403
https://doi.org/10.1016/j.mechmachtheory.2017.12.013
46 D H Wang, K M Lee, J J Ji. A passive gait-based weight-support lower extremity exoskeleton with compliant joints. IEEE Transactions on Robotics, 2016, 32( 4): 933– 942
https://doi.org/10.1109/TRO.2016.2572692
47 Y J Wang, C L Wu, L Q Yu, Y Y Mei. Dynamics of a rolling robot of closed five-arc-shaped-bar linkage. Mechanism and Machine Theory, 2018, 121: 75– 91
https://doi.org/10.1016/j.mechmachtheory.2017.10.010
48 L Bascetta, G Ferretti, B Scaglioni. Closed form Newton–Euler dynamic model of flexible manipulators. Robotica, 2017, 35( 5): 1006– 1030
https://doi.org/10.1017/S0263574715000934
49 Z B Sun, F Li, X Q Duan, L Jin, Y F Lian, S S Liu, K P Liu. A novel adaptive iterative learning control approach and human-in-the-loop control pattern for lower limb rehabilitation robot in disturbances environment. Autonomous Robots, 2021, 45( 4): 595– 610
https://doi.org/10.1007/s10514-021-09988-3
50 A Zoss, H Kazerooni. Design of an electrically actuated lower extremity exoskeleton. Advanced Robotics, 2006, 20( 9): 967– 988
https://doi.org/10.1163/156855306778394030
51 W Sun, J W Lin, S F Su, N Wang, M J Er. Reduced adaptive fuzzy decoupling control for lower limb exoskeleton. IEEE Transactions on Cybernetics, 2021, 51( 3): 1099– 1109
https://doi.org/10.1109/TCYB.2020.2972582
52 S Y Qiu, W Guo, D Caldwell, F Chen. Exoskeleton online learning and estimation of human walking intention based on dynamical movement primitives. IEEE Transactions on Cognitive and Developmental Systems, 2021, 13( 1): 67– 79
https://doi.org/10.1109/TCDS.2020.2968845
53 J Ghan, R Steger, H Kazerooni. Control and system identification for the Berkeley lower extremity exoskeleton (BLEEX). Advanced Robotics, 2006, 20( 9): 989– 1014
https://doi.org/10.1163/156855306778394012
54 R Huang, H Cheng, H L Guo, X C Lin, J W Zhang. Hierarchical learning control with physical human-exoskeleton interaction. Information Sciences, 2018, 432: 584– 595
55 V Ruiz Garate, A Parri, T F Yan, M Munih, R Molino Lova, N Vitiello, R Ronsse. Walking assistance using artificial primitives: a novel bioinspired framework using motor primitives for locomotion assistance through a wearable cooperative exoskeleton. IEEE Robotics & Automation Magazine, 2016, 23( 1): 83– 95
https://doi.org/10.1109/MRA.2015.2510778
56 J J Xu, Y F Li, L S Xu, C Peng, S Q Chen, J F Liu, C C Xu, G X Cheng, H Xu, Y Liu, J Chen. A m ulti-mode rehabilitation robot with magnetorheological actuators based on human motion intention estimation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27( 10): 2216– 2228
https://doi.org/10.1109/TNSRE.2019.2937000
57 C Meijneke, G van Oort, V Sluiter, E van Asseldonk, N L Tagliamonte, F Tamburella, I Pisotta, M Masciullo, M Arquilla, M Molinari, A R Wu, F Dzeladini, A J Ijspeert, H van der Kooij. Symbitron exoskeleton: design, control, and evaluation of a modular exoskeleton for incomplete and complete spinal cord injured individuals. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29: 330– 339
https://doi.org/10.1109/TNSRE.2021.3049960
58 S Song, H Geyer. A neural circuitry that emphasizes spinal feedback generates diverse behaviours of human locomotion. The Journal of Physiology, 2015, 593( 16): 3493– 3511
https://doi.org/10.1113/JP270228
59 G Aguirre-Ollinger, U Nagarajan, A Goswami. An admittance shaping controller for exoskeleton assistance of the lower extremities. Autonomous Robots, 2016, 40( 4): 701– 728
https://doi.org/10.1007/s10514-015-9490-8
60 H Kazerooni, R Steger, L H Huang. Hybrid control of the Berkeley lower extremity exoskeleton (BLEEX). International Journal of Robotics Research, 2006, 25( 5–6): 561– 573
https://doi.org/10.1177/0278364906065505
61 W He, Z J Li, C L P Chen. A survey of human-centered intelligent robots: issues and challenges. IEEE/CAA Journal of Automatica Sinica, 2017, 4( 4): 602– 609
https://doi.org/10.1109/JAS.2017.7510604
62 P K Jamwal, S Q Xie, S Hussain, J G Parsons. An adaptive wearable parallel robot for the treatment of ankle injuries. IEEE/ASME Transactions on Mechatronics, 2014, 19( 1): 64– 75
https://doi.org/10.1109/TMECH.2012.2219065
63 N Karavas, A Ajoudani, N Tsagarakis, J Saglia, A Bicchi, D Caldwell. Tele-impedance based assistive control for a compliant knee exoskeleton. Robotics and Autonomous Systems, 2015, 73: 78– 90
https://doi.org/10.1016/j.robot.2014.09.027
64 P C Kao, C L Lewis, D P Ferris. Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton. Journal of Biomechanics, 2010, 43( 2): 203– 209
https://doi.org/10.1016/j.jbiomech.2009.09.030
65 A Kilicarslan, R G Grossman, J L Contreras-Vidal. A robust adaptive denoising framework for real-time artifact removal in scalp EEG measurements. Journal of Neural Engineering, 2016, 13( 2): 0 26013
https://doi.org/10.1088/1741-2560/13/2/026013
66 T C Bulea, S Prasad, A Kilicarslan, J L Contreras-Vidal. Sitting and standing intention can be decoded from scalp EEG recorded prior to movement execution. Frontiers in Neuroscience, 2014, 8: 376
https://doi.org/10.3389/fnins.2014.00376
67 D Liu, W H Chen, Z C Pei, J H Wang. A brain-controlled lower-limb exoskeleton for human gait training. Review of Scientific Instruments, 2017, 88( 10): 104302
https://doi.org/10.1063/1.5006461
68 M X Lyu, W H Chen, X L Ding, J H Wang, Z C Pei, B C Zhang. Development of an EMG-controlled knee exoskeleton to assist home rehabilitation in a game context. Frontiers in Neurorobotics, 2019, 13: 67
https://doi.org/10.3389/fnbot.2019.00067
69 L P Huang, J B Zheng, H C Hu. Online gait phase detection in complex environment based on distance and multi-sensors information fusion using inertial measurement units. International Journal of Social Robotics, 2022, 14( 2): 413– 428
70 I Kang, D D Molinaro, S Duggal, Y R Chen, P Kunapuli, A J Young. Real-time gait phase estimation for robotic hip exoskeleton control during multimodal locomotion. IEEE Robotics and Automation Letters, 2021, 6( 2): 3491– 3497
https://doi.org/10.1109/LRA.2021.3062562
71 J B Wang, Y Q Fei, W D Chen. Integration, sensing, and control of a modular soft-rigid pneumatic lower limb exoskeleton. Soft Robotics, 2020, 7( 2): 140– 154
https://doi.org/10.1089/soro.2019.0023
72 T Seel, J Raisch, T Schauer. IMU-based joint angle measurement for gait analysis. Sensors, 2014, 14( 4): 6891– 6909
https://doi.org/10.3390/s140406891
73 T Beravs, P Reberšek, D Novak, J Podobnik, M Munih. Development and validation of a wearable inertial measurement system for use with lower limb exoskeletons. In: Proceedings of 2011 the 11th IEEE-RAS International Conference on Humanoid Robots. Bled: IEEE, 2011, 212– 217
https://doi.org/10.1109/Humanoids.2011.6100914
74 J C Ji, T Song, S Guo, F F Xi, H Wu. Robotic-assisted rehabilitation trainer improves balance function in stroke survivors. IEEE Transactions on Cognitive and Developmental Systems, 2020, 12( 1): 43– 53
https://doi.org/10.1109/TCDS.2018.2883653
75 Z L Chen, Q Guo, H Y Xiong, D Jiang, Y Yan. Control and implementation of 2-DOF lower limb exoskeleton experiment platform. Chinese Journal of Mechanical Engineering, 2021, 34( 1): 22
https://doi.org/10.1186/s10033-021-00537-8
76 B J Chen, E H Zheng, X D Fan, T Liang, Q N Wang, K L Wei, L Wang. Locomotion mode classification using a wearable capacitive sensing system. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2013, 21( 5): 744– 755
https://doi.org/10.1109/TNSRE.2013.2262952
77 J Casas, E Senft, L F Gutiérrez, M Rincón-Rocancio, M Múnera, T Belpaeme, C A Cifuentes. Social assistive robots: assessing the impact of a training assistant robot in cardiac rehabilitation. International Journal of Social Robotics, 2021, 13( 6): 1189– 1203
https://doi.org/doi:10.1007/s12369-020-00708-y
78 S A Billinger, R Arena, J Bernhardt, J J Eng, B A Franklin, C M Johnson, M MacKay-Lyons, R F Macko, G E Mead, E J Roth, M Shaughnessy, A Tang. Physical activity and exercise recommendations for stroke survivors: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke, 2014, 45( 8): 2532– 2553
https://doi.org/10.1161/STR.0000000000000022
79 S Maggioni, A Melendez-Calderon, E van Asseldonk, V Klamroth-Marganska, L Lünenburger, R Riener, H van der Kooij. Robot-aided assessment of lower extremity functions: a review. Journal of NeuroEngineering and Rehabilitation, 2016, 13( 1): 72
https://doi.org/10.1186/s12984-016-0180-3
80 S Hussain, S Q Xie, P K Jamwal. Robust nonlinear control of an intrinsically compliant robotic gait training orthosis. IEEE Transactions on Systems, Man, and Cybernetics. Systems, 2013, 43( 3): 655– 665
https://doi.org/10.1109/TSMCA.2012.2207111
81 X B Yu, B Li, W He, Y H Feng, L Cheng, C Silvestre. Adaptive-constrained impedance control for human ‒ robot co-transportation. IEEE Transactions on Cybernetics, 2021 (in press)
82 D Shi, W X Zhang, W Zhang, X L Ding. Assist-as-needed attitude control in three-dimensional space for robotic rehabilitation. Mechanism and Machine Theory, 2020, 154: 104044
https://doi.org/10.1016/j.mechmachtheory.2020.104044
83 D Shi, W X Zhang, W Zhang, X L Ding. Force field control for the three-dimensional gait adaptation using a lower limb rehabilitation robot. In: Uhl T, ed. Advances in Mechanism and Machine Science. IFToMM WC 2019. Mechanisms and Machine Science, vol 73. Cham: Springer International Publishing, 2019, 73: 1919– 1928
https://doi.org/10.1007/978-3-030-20131-9_190
84 L T Wang, S Q Wang, E H F van Asseldonk, H van der Kooij. Actively controlled lateral gait assistance in a lower limb exoskeleton. In: Proceedings of 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo: IEEE, 2013, 965– 970
https://doi.org/doi: 10.1109/IROS.2013.6696467
85 A Tsukahara, Y Hasegawa, K Eguchi, Y Sankai. Restoration of gait for spinal cord injury patients using HAL with intention estimator for preferable swing speed. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2015, 23( 2): 308– 318
https://doi.org/10.1109/TNSRE.2014.2364618
86 A Duschau-Wicke, J von Zitzewitz, A Caprez, L Lunenburger, R Riener. Path control: a method for patient-cooperative robot-aided gait rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2010, 18( 1): 38– 48
https://doi.org/10.1109/TNSRE.2009.2033061
87 R Riener, L Lunenburger, S Jezernik, M Anderschitz, G Colombo, V Dietz. Patient-cooperative strategies for robot-aided treadmill training: first experimental results. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2005, 13( 3): 380– 394
https://doi.org/10.1109/TNSRE.2005.848628
88 X M Niu, G Q Gao, X J Liu, Z M Fang. Decoupled sliding mode control for a novel 3-DOF parallel manipulator with actuation redundancy. International Journal of Advanced Robotic Systems, 2015, 12( 5): 64
https://doi.org/10.5772/60508
89 J K Mohanta, M Santhakumar, S Kurtenbach, B Corves, M Hüsing. Augmented PID control of a 2PPR-2PRP planar parallel manipulator for lower limb rehabilitation applications. In: Corves B, Lovasz E C, Hüsing M, Maniu I, Gruescu C, eds. New Advances in Mechanisms, Mechanical Transmissions and Robotics Mechanisms and Machine Science, vol 46. Cham: Springer International Publishing, 2017, 46: 391– 399
https://doi.org/10.1007/978-3-319-45450-4_39
90 L C Luo, L Peng, C Wang, Z G Hou. A greedy assist-as-needed controller for upper limb rehabilitation. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30( 11): 3433– 3443
https://doi.org/10.1109/TNNLS.2019.2892157
91 Y Li, S S Ge. Human‒robot collaboration based on motion intention estimation. IEEE/ASME Transactions on Mechatronics, 2014, 19( 3): 1007– 1014
https://doi.org/10.1109/TMECH.2013.2264533
92 J L Emken, J E Bobrow, D J Reinkensmeyer. Robotic movement training as an optimization problem: designing a controller that assists only as needed. In: Proceedings of the 9th International Conference on Rehabilitation Robotics (ICORR). Chicago: IEEE, 2005, 307– 312
https://doi.org/10.1109/ICORR.2005.1501108
93 D Zanotto, P Stegall, S K Agrawal. 2014. Adaptive assist-as-needed controller to improve gait symmetry in robot-assisted gait training. In: Proceedings of 2014 IEEE International Conference on Robotics and Automation (ICRA). Hong Kong: IEEE, 2014, 724– 729
https://doi.org/10.1109/ICRA.2014.6906934
94 D B Fineberg, P Asselin, N Y Harel, I Agranova-Breyter, S D Kornfeld, W A Bauman, A M Spungen. Vertical ground reaction force-based analysis of powered exoskeleton-assisted walking in persons with motor-complete paraplegia. The Journal of Spinal Cord Medicine, 2013, 36( 4): 313– 321
https://doi.org/10.1179/2045772313Y.0000000126
95 Y Long, Z J Du, W D Wang, W Dong. Human motion intent learning based motion assistance control for a wearable exoskeleton. Robotics and Computer-Integrated Manufacturing, 2018, 49: 317– 327
https://doi.org/10.1016/j.rcim.2017.08.007
96 D Shi, W Zhang, L D Wang, W X Zhang, Y G Feng, X L Ding. Joint angle adaptive coordination control of a serial parallel lower limb rehabilitation exoskeleton. IEEE Transactions on Medical Robotics and Bionics, 2022, 4(3): 775– 784
https://doi.org/10.1109/TMRB.2022.3178520
97 R Huang, H Cheng, Y Chen, Q M Chen, X C Lin, J Qiu. Optimisation of reference gait trajectory of a lower limb exoskeleton. International Journal of Social Robotics, 2016, 8( 2): 223– 235
https://doi.org/10.1007/s12369-015-0334-7
98 D X Liu, X Y Wu, W B Du, C Wang, C J Chen, T T Xu. Deep spatial-temporal model for rehabilitation gait: optimal trajectory generation for knee joint of lower-limb exoskeleton. Assembly Automation, 2017, 37( 3): 369– 378
https://doi.org/10.1108/AA-11-2016-155
99 G Kwakkel, B Kollen, E Lindeman. Understanding the pattern of functional recovery after stroke: facts and theories. Restorative Neurology and Neuroscience, 2004, 22( 3–5): 281– 299
100 P Langhorne, J Bernhardt, G. Kwakkel Stroke rehabilitation. The Lancet, 2011, 377( 9778): 1693– 1702
https://doi.org/10.1016/S0140-6736(11)60325-5
101 H Barbeau, M Ladouceur, M M Mirbagheri, R E Kearney. The effect of locomotor training combined with functional electrical stimulation in chronic spinal cord injured subjects: walking and reflex studies. Brain Research Reviews, 2002, 40( 1–3): 274– 291
https://doi.org/10.1016/S0165-0173(02)00210-2
102 Y R Yang, R Y Wang, K H Lin, M Y Chu, R C Chan. Task-oriented progressive resistance strength training improves muscle strength and functional performance in individuals with stroke. Clinical Rehabilitation, 2006, 20( 10): 860– 870
https://doi.org/10.1177/0269215506070701
103 C Morawietz, F Moffat. Effects of locomotor training after incomplete spinal cord injury: a systematic review. Archives of Physical Medicine and Rehabilitation, 2013, 94( 11): 2297– 2308
https://doi.org/10.1016/j.apmr.2013.06.023
104 R D Herbert, J L Taylor, S R Lord, S C Gandevia. Prevalence of motor impairment in residents of New South Wales, Australia aged 55 years and over: cross-sectional survey of the 45 and Up cohort. BMC Public Health, 2020, 20( 1): 1353
https://doi.org/10.1186/s12889-020-09443-5
105 F X Chen, C Zhang, J H Chen, G L Yang. Accurate subdomain model for computing magnetic field of short moving-magnet linear motor with H albach array. IEEE Transactions on Magnetics, 2020, 56( 9): 1– 9
https://doi.org/10.1109/TMAG.2020.3002457
106 Y Fang, Z F Lerner. Feasibility of augmenting ankle exoskeleton walking performance with step length biofeedback in individuals with cerebral palsy. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29: 442– 449
107 Y Kim, A Chortos, W T Xu, Y X Liu, J Y Oh, D Son, J Kang, A M Foudeh, C X Zhu, Y Lee, S M Niu, J Liu, R Pfattner, Z Bao, T W Lee. A bioinspired flexible organic artificial afferent nerve. Science, 2018, 360( 6392): 998– 1003
https://doi.org/10.1126/science.aao0098
108 Y C Huang, Z X He, Y X Liu, R Y Yang, X F Zhang, G Cheng, J G Yi, J P Ferreira, T Liu. Real-time intended knee joint motion prediction by deep-recurrent neural networks. IEEE Sensors Journal, 2019, 19( 23): 11503– 11509
https://doi.org/10.1109/JSEN.2019.2933603
109 A Ugartemendia, D Rosquete, J J Gil, I Diaz, D Borro. Machine learning for active gravity compensation in robotics: application to neurological rehabilitation systems. IEEE Robotics & Automation Magazine, 2020, 27( 2): 78– 86
https://doi.org/10.1109/MRA.2020.2978484
110 W Fang, Z W An. A scalable wearable AR system for manual order picking based on warehouse floor-related navigation. The International Journal of Advanced Manufacturing Technology, 2020, 109( 7–8): 2023– 2037
https://doi.org/10.1007/s00170-020-05771-3
111 M Oppezzo, D L Schwartz. Give your ideas some legs: the positive effect of walking on creative thinking. Journal of Experimental Psychology: Learning, Memory, and Cognition, 2014, 40( 4): 1142– 1152
https://doi.org/10.1037/a0036577
112 R Hidayah, S Chamarthy, A Shah, M Fitzgerald-Maguire, S K Agrawal. Walking with augmented reality: a preliminary assessment of visual feedback with a cable-driven active leg exoskeleton (C-ALEX). IEEE Robotics and Automation Letters, 2019, 4( 4): 3948– 3954
https://doi.org/10.1109/LRA.2019.2929989
[1] Zhengwei WANG, Yahui GAN, Xianzhong DAI. A novel task-oriented framework for dual-arm robotic assembly task[J]. Front. Mech. Eng., 2021, 16(3): 528-545.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed