Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2024, Vol. 19 Issue (1) : 6    https://doi.org/10.1007/s11465-023-0772-0
Review on piezoelectric actuators: materials, classifications, applications, and recent trends
Xuyang ZHOU1, Shuang WU2, Xiaoxu WANG2, Zhenshan WANG1, Qixuan ZHU1, Jinshuai SUN1, Panfeng HUANG2, Xuewen WANG1, Wei HUANG1, Qianbo LU1,3()
1. Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi’an 710072, China
2. School of Automation, Northwestern Polytechnical University, Xi’an 710072, China
3. Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
 Download: PDF(7865 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Piezoelectric actuators are a class of actuators that precisely transfer input electric energy into displacement, force, or movement outputs efficiently via inverse piezoelectric effect-based electromechanical coupling. Various types of piezoelectric actuators have sprung up and gained widespread use in various applications in terms of compelling attributes, such as high precision, flexibility of stoke, immunity to electromagnetic interference, and structural scalability. This paper systematically reviews the piezoelectric materials, operating principles, representative schemes, characteristics, and potential applications of each mainstream type of piezoelectric actuator. Herein, we intend to provide a more scientific and nuanced perspective to classify piezoelectric actuators into direct and indirect categories with several subcategories. In addition, this review outlines the pros and cons and the future development trends for all kinds of piezoelectric actuators by exploring the relations and mechanisms behind them. The rich content and detailed comparison can help build an in-depth and holistic understanding of piezoelectric actuators and pave the way for future research and the selection of practical applications.

Keywords piezoelectric actuator      piezoelectric effect      amplified piezoelectric actuator      ultrasonic actuator      stepping actuator      piezoelectric polymer     
Corresponding Author(s): Qianbo LU   
Just Accepted Date: 07 November 2023   Issue Date: 24 January 2024
 Cite this article:   
Xuyang ZHOU,Shuang WU,Xiaoxu WANG, et al. Review on piezoelectric actuators: materials, classifications, applications, and recent trends[J]. Front. Mech. Eng., 2024, 19(1): 6.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-023-0772-0
https://academic.hep.com.cn/fme/EN/Y2024/V19/I1/6
Actuator type Driving principle Accuracy Advantages Disadvantages
Electrostatic Coulomb force Below the micron High efficiency, small size, insensitive to the outside temperature Small output force, harsh environment requirements
Electromagnetic Electromagnetic induction Micron High response frequency, reliable operation, low cost, better output, insensitive to the outside temperature Large volume, serious heat, loud noise
Shape-memory alloys Shape-memory effect Micron Better flexibility, small size, large deformation, high energy density Sensitive to external temperature, slow response, low efficiency
Magnetostrictive Magnetostrictive effect Below the micron Large driving force, no fatigue and heat loss Sensitive to electromagnetic magnetic fields, hysteresis
Electrostrictive Electrostrictive effect Below the nanoscale Low creep, better reproducibility Sensitive to temperature, average energy density
Photostrictive Photostrictive effect Micron Antielectromagnetic interference, lightweight, miniaturization, high response frequency Sensitive to temperature, low efficiency
Piezoelectric Inverse piezoelectric effect Subnanometer Antimagnetic interference, high efficiency, high response frequency Hysteresis, creep, more sensitive to temperature
Tab.1  Comparison of different types of actuators and their principles, accuracy, advantages, and disadvantages
Fig.1  Piezoelectric actuators and their fields of application.
Fig.2  Classification diagram of piezoelectric actuators.
Type Mode Orientation of stress Orientation of charge Coupling coefficient
Direct piezoelectric effect Longitudinal 3 3 d33
Transversal 3 1 d31
Shear 1 5 d15
Indirect piezoelectric effect Longitudinal 3 3 e33
Transversal 3 1 e31
Shear 1 5 e15
Tab.2  Coupling coefficients for different modes
Fig.3  Piezoelectric effect energy conversion relationship.
Fig.4  Unimorph piezoelectric actuator: (a) bending mode 1, (b) bending mode 2, and (c) linear expansion/retraction mode.
Compound Material Type Piezoelectric constants Ref.
d33/(pC·N−1) d31/(pC·N−1)
Inorganic α-Quartz Single crystal 2.31 ? [37]
LiNbO3 6 −1 [37]
PMN-PT 2500 ? [42]
PZN-PT 2455 −1204 [40]
PIN-PT 1600 ? [41]
AlN Ceramic 5.5 −2.0 [47]
BaTiO3 191 −79 [35]
PZT-5A 374 −171 [48]
PZT-5H 650 −320 [35]
Organic PVDF Polymer 25 ? [56]
Polyimide 2.5–16.5 ? [53]
Tab.3  Piezoelectric coupling coefficients of different piezoelectric inorganic and organic materials
Fig.5  Different kinds of unimorph piezoelectric actuators and applications: (a) RAINBOW actuator [72], reproduced with permission from AIP Publishing; (b) THUNDER composite laminate [73], reproduced with permission from SPIE; (c) biomimetic fish-shaped robot [74], reproduced with permission from Springer Nature; (d) piezo cooling fan [75], reproduced with permission from Elsevier; (e) active vibration isolation system [76], reproduced with permission from SAGE Publications; (f) multi-degree of freedom piezoelectric micromanipulator [77], reproduced with permission from IEEE; (g) miniature cross-shaped underwater robot [78], reproduced with permission from IEEE; (h) CH201, a 5 m piezoelectric micromachined ultrasound transducer rangefinder commercialized by TDK Inc., reproduced with permission from IEEE; (i) 3D sonic sensor used as an in-display fingerprint sensor developed by Qualcomm Inc., and (j) Cello, a handheld portable piezoelectric micromachined ultrasound transducer-based imaging probe developed by Exo Inc. PJA: pulsed-jet actuator, PZT (PLZT): piezoelectric lead zirconate titanate.
Fig.6  Bimorph piezoelectric actuators: (a) linear expansion/retraction mode and bending mode, (b) parallel configuration, and (c) antiparallel configuration.
Fig.7  Use of bimorph piezoelectric actuators in different scenarios: (a) prototype of the bimorph actuator-based manipulator arm [90], reproduced with permission from SAGE Publications; (b) flapping micro air vehicle [92], reproduced with permission from Springer Nature; (c) piezoelectric actuator-based microgripper [91], reproduced with permission from SPIE; and (d) insect-scale robots [93], reproduced with permission from IEEE. PZT: piezoelectric lead zirconate titanate.
Fig.8  Three structures of the stack: (a) longitudinal stack, (b) transversal stack, and (c) shear stack. PZT: piezoelectric lead zirconate titanate.
Affiliated company Product Main feature Operating voltage/V Operating temperature/°C Blocking force/kN
Physik instrumente (PI) P-007?P-056 PICA stack piezoelectric actuators High forces up to 78 kN, high displacement up to 300 μm, flexible production 0–1000 −20–85 0.65–78.00
P-080 PICMA stack multilayer ring actuators With an inner hole for preload or an aperture for optical applications, ideal for dynamic operation −20–100 −40–150 0.80–0.85
P-088 round PICMA stack multilayer piezoelectric actuators High blocking force up to 7.5 kN, flexible and adaptable overall height −20–100 −40–150 7.50
Piezo direct PDJ150 series for rectangular actuators ? −20–150 −20–120 0.25–7.20
PDH200 series for ring actuators ? −20–200 −20–120 3.60–7.20
Cedrat technologies Parallel pre-stressed actuator series Low voltage piezo ceramic, optimal preload for high dynamics −20–150 ? 1.10–9.30
COREMORROW NAC20 series ? 0–60, 150, 200 0–150 0.17–9.45
NAC21 series ? 0–60, 150, 200 0–150 1.06–8.45
Tab.4  Piezo stack products from different companies
Fig.9  Classification of flexible hinges.
Fig.10  Amplification mechanism using flexible hinges: (a) single lever type, (b) bridge type, and (c) Scott–Russell type.
Fig.11  Piezoelectric actuators with a flexible hinge mechanism: (a) size comparison of the fabricated microgripper of lever type with piezoelectric actuator and (b) CAD model of the microgripper [111], reproduced with permission from Springer Nature; (c) CAD model of the miniature gripper of bridge type [112], reproduced with permission from IEEE; (d) prototype of the piezo actuator with a Scott–Russell (S–R) flexible hinge [113], reproduced with permission from AIP Publishing; and (e) photo of the flexure-based S–R mechanism for nanomanipulation [114], reproduced with permission from Elsevier. LAM: lever-type amplification mechanism, PSA: piezoelectric stack actuator, PZT: piezoelectric lead zirconate titanate, TAM: triangular-type amplification mechanism.
Fig.12  Basic operating principle of the ultrasonic piezoelectric actuators.
Fig.13  Excitation of standing waves and methods of changing direction: (a) operating principle of standing wave motor, changing the propagation direction by (b) electrode configuration and (c) frequency configuration.
Fig.14  Various standing wave ultrasonic motors: (a) prototype of the linear ultrasonic motor based on asymmetric structure [128], reproduced with permission from Elsevier; (b) actuator prototype proposed by Liu et al. [129], reproduced with permission from Elsevier; (c) actuator used for deep sea [130], reproduced under the terms of the CC BY license; (d) prototype of the frog-shaped ultrasonic actuator [133], reproduced with permission from IEEE; (e) L-shaped ultrasonic motor [134], reproduced with permission from AIP Publishing; (f) standing wave ultrasonic motor with rotational displacement output [135], reproduced with permission from Elsevier; (g) bidirectional ultrasonic motors [137], reproduced with permission from Elsevier; (h) standing wave ultrasonic motor with three transducers [136], reproduced with permission from Trans Tech Publications; (i) ultrasonic motor for absolute gravimeter [131], reproduced with permission from Elsevier; and (j) ultrasonic motor for haptic feedback [132], reproduced with permission from Elsevier. PZT: piezoelectric lead zirconate titanate, SWM: standing wave motor.
Fig.15  Operating principle of the propagating wave motor: (a) elliptical motion of the driving feet and (b) synthesis of the propagating wave.
Fig.16  Various traveling wave ultrasonic motors: (a) prototype ring-type motor with radial bending mode [144], reproduced with permission from IEEE; (b) structure of ball-type multi-degree of freedom motor [149], reproduced with permission from Elsevier; (c) structure diagram of hollow traveling wave rotary motor [150], reproduced with permission from SAGE Publications; (d) traveling wave motor (TWM) for wheeled robot [146], reproduced with permission from IOP Publishing; (e) traveling wave motor for manipulator [145], reproduced under the terms of the CC BY license; (f) traveling wave motor for camera auto zooming of a Samsung cellular phone; and (g) ultrasonic motor for feeding device [147], reproduced under the terms of the CC BY license. PZT: piezoelectric lead zirconate titanate.
Fig.17  Different control signals for friction–inertia actuators: (a) sawtooth wave signal, (b) isosceles triangle signal, and (c) square wave signal.
Fig.18  Actuating principles of friction–inertia actuators: (a) principle of inertia/impact drive actuator and (b) principle of stick–slip drive actuator.
Fig.19  Different kinds of inertia/impact drive actuators: (a) linear piezoelectric motor by Liu et al. [162], reproduced with permission from Trans Tech Publications; (b) diagram of the prototype by Pan et al. [163], reproduced with permission from Elsevier; (c) prototype of the inertia drive actuator by Hua et al. [165], reproduced with permission from Trans Tech Publications; (d) prototype of rotary piezoelectric motor [164], reproduced with permission from SPIE; and (e) structure of the rotary actuator by Wen et al. [166], reproduced with permission from Springer Nature.
Fig.20  Different kinds of stick–slip drive actuators (SSDAs): (a) photograph of SSDA used for endoscopic devices [169], reproduced with permission from Elsevier; (b) prototype of SSDA for flapping wing [170], reproduced with permission from Springer Nature; (c) prototype of a linear SSDA [171], reproduced with permission from Taylor & Francis; and (d) cross-section of the rotary SSDA [172], reproduced with permission from IEEE. PZT: piezoelectric lead zirconate titanate.
Fig.21  Motion of inchworm and the operating mode of the actuator [161]: (a) inchworm in nature, (b) walking mode, and (c) pushing mode. Reproduced with permission from Elsevier.
Fig.22  Inchworm piezoelectric actuators combined with different structures: (a) inchworm actuator combine with flexible hinge [192], reproduced with permission from American Scientific Publishers; (b) improving performance with wedge blocks and springs [193], reproduced with permission from Elsevier; and (c) design of a permanent magnet structure is adopted [194], reproduced with permission from Elsevier.
Fig.23  Improvement of inchworm actuators: (a) prototype of the 2 degrees of freedom positioning [197], reproduced with permission from Elsevier; (b) prototype of high-speed inchworm actuator [195], reproduced under the terms of the CC BY license; (c) structure and exciting signals of inchworm actuator without “backlash” phenomenon [196], reproduced with permission from Elsevier; (d) miniaturized inchworm actuator [199], reproduced with permission from Institute of Physics Publishing; and (e) simplified design of inchworm actuator [198], reproduced with permission from Elsevier. NC: normally clamped, NU: normally unclamped, PSA: piezoelectric stack actuator, PZT: piezoelectric lead zirconate titanate.
Actuation method Type Advantages Disadvantages
Direct piezoelectric actuators Membrane piezoelectric actuators Simplest structure, excellent reliability, and repeatability Short stroke and weak load capacity
Multiple piezo stack actuators Larger stroke, lower actuating voltage, rapid response time, higher stiffness and electromechanical coupling, and can withstand compression deformation Cannot withstand tensile deformation
Actuators with flexible hinges Compact structure, smooth and repeatable motion, low inertial mass, low wear, and no “backlash” phenomenon Weak output torque, poor overall stiffness, prominent stress concentration, and slow response speed
Indirect piezoelectric actuators Standing wave actuators Low cost (only a few driving sources needed), direct output displacement, and high efficiency More severe wear
Traveling wave actuators Easy to implement bidirectional actuating Lower efficiency, more complex structure, and difficult to miniaturize
Friction–inertia actuators Unlimited stroke, simple control system, and low cost Slow speed, weak output torque, poor mass transport capacity, “backlash” phenomenon, accumulated errors, serious wear and short working life, and unable to achieve multiaxis motion
Inchworm actuators Unlimited stroke, better load capacity, repeatability, and reliability Slightly worse accuracy, high cost, lower speed, complex control system, and mechanical structure
Tab.5  Characteristics of different piezoelectric actuators
Fig.24  Comparison of the performance of (a) direct and (b) indirect piezoelectric actuators (based on Refs. [206211]).
Abbreviations
DOF Degree of freedom
HAM Hybrid-type amplification mechanism
IDA Inertia/impact drive actuator
LAM Lever-type amplification mechanism
PI Physik Instrumente
PID Proportional integral derivative
PMUT Piezoelectric micromachined ultrasound transducer
PSA Piezoelectric stack actuator
PVDF Polyvinylidene fluoride
PZT Piezoelectric lead zirconate titanate
RAINBOW Reduced and internally biased oxide wafer
S–R Scott–Russell
SSDA Stick–slip drive actuator
SWM Standing wave motor
TAM Triangular-type amplification mechanism
TWM Traveling wave motor
THUNDER Thin layer unimorph driver
Variables
A Amplitude of the standing wave
d15, d31, d33 Piezoelectric coupling coefficients
Di Electrical displacement
h Height of the single layer of piezoelectric material
k Wavenumber whose value is equal to 2π/λ
k33 Electromechanical coupling factor
l Length of the single layer of piezoelectric material
L Output displacement
t Time
Tc Curie temperature
U Voltage applied to the external electrodes
x Coordinate of a certain position on the elastic body
ω Angular frequency
λ Wavelength of the standing wave
  
1 D Kumar, J Daudpoto, B S Chowdhry. Challenges for practical applications of shape memory alloy actuators. Materials Research Express, 2020, 7(7): 073001
https://doi.org/10.1088/2053-1591/aba403
2 C D Gao, Z H Zeng, S P Peng, C J Shuai. Magnetostrictive alloys: promising materials for biomedical applications. Bioactive Materials, 2022, 8: 177–195
https://doi.org/10.1016/j.bioactmat.2021.06.025
3 F Ceyssens, S Sadeghpour, H Fujita, R Puers. Actuators: accomplishments, opportunities and challenges. Sensors and Actuators A: Physical, 2019, 295: 604–611
https://doi.org/10.1016/j.sna.2019.05.048
4 Q Yuan, B Kato, K Q Fan, Y Wang. Phased array guided wave propagation in curved plates. Mechanical Systems and Signal Processing, 2023, 185: 109821
https://doi.org/10.1016/j.ymssp.2022.109821
5 K Uchino. Advanced Piezoelectric Materials: Science and Technology. 2nd ed. Cambridge: Woodhead Publishing Ltd., 2017
6 W Heywang, K Lubitz, W Wersing. Piezoelectricity: Evolution and Future of a Technology. Heidelberg: Springer, 2008
7 C Yang, K Youcef-Toumi. Principle, implementation, and applications of charge control for piezo-actuated nanopositioners: a comprehensive review. Mechanical Systems and Signal Processing, 2022, 171: 108885
https://doi.org/10.1016/j.ymssp.2022.108885
8 S P Wang, W Rong, L F Wang, H Xie, L Sun, J K Mills. A survey of piezoelectric actuators with long working stroke in recent years: classifications, principles, connections and distinctions. Mechanical Systems and Signal Processing, 2019, 123: 591–605
https://doi.org/10.1016/j.ymssp.2019.01.033
9 S Mohith, A R Upadhya, K P Navin, S M Kulkarni, M Rao. Recent trends in piezoelectric actuators for precision motion and their applications: a review. Smart Materials and Structures, 2021, 30(1): 013002
https://doi.org/10.1088/1361-665X/abc6b9
10 Z M Zhang, Q An, J M Li, W J Zhang. Piezoelectric friction–inertia actuator—a critical review and future perspective. The International Journal of Advanced Manufacturing Technology, 2012, 62(5–8): 669–685
https://doi.org/10.1007/s00170-011-3827-z
11 J Jeon, C Han, Y M Han, S B Choi. A new type of a direct-drive valve system driven by a piezostack actuator and sliding spool. Smart Materials and Structures, 2014, 23(7): 075002
https://doi.org/10.1088/0964-1726/23/7/075002
12 Z F Xuan, T Jin, N S Ha, N S Goo, T H Kim, B W Bae, H S Ko, K W Yoon. Performance of piezo-stacks for a piezoelectric hybrid actuator by experiments. Journal of Intelligent Material Systems and Structures, 2014, 25(18): 2212–2220
https://doi.org/10.1177/1045389X14533439
13 F X Chen, Q J Zhang, Y Z Gao, W Dong. A review on the flexure-based displacement amplification mechanisms. IEEE Access, 2020, 8: 205919–205937
https://doi.org/10.1109/ACCESS.2020.3037827
14 Q S Xu, Y M Li. Analytical modeling, optimization and testing of a compound bridge-type compliant displacement amplifier. Mechanism and Machine Theory, 2011, 46(2): 183–200
https://doi.org/10.1016/j.mechmachtheory.2010.09.007
15 Y Ding, L J Lai. Design and analysis of a displacement amplifier with high load capacity by combining bridge-type and Scott–Russell mechanisms. Review of Scientific Instruments, 2019, 90(6): 065102
https://doi.org/10.1063/1.5091672
16 W Dong, F X Chen, F T Gao, M Yang, L N Sun, Z J Du, J Tang, D Zhang. Development and analysis of a bridge-lever-type displacement amplifier based on hybrid flexure hinges. Precision Engineering, 2018, 54: 171–181
https://doi.org/10.1016/j.precisioneng.2018.04.017
17 K Spanner, B Koc. Piezoelectric motors, an overview. Actuators, 2016, 5(1): 6
https://doi.org/10.3390/act5010006
18 M Hunstig. Piezoelectric inertia motors—a critical review of history, concepts, design, applications, and perspectives. Actuators, 2017, 6(1): 7
https://doi.org/10.3390/act6010007
19 X Q Tian, Y X Liu, J Deng, L Wang, W S Chen. A review on piezoelectric ultrasonic motors for the past decade: classification, operating principle, performance, and future work perspectives. Sensors and Actuators A: Physical, 2020, 306: 111971
https://doi.org/10.1016/j.sna.2020.111971
20 A H Meitzler, D Berlincourt, F S Welsh, H F Tiersten, G A Coquin, W A Warner. IEEE Standard on Piezoelectricity. ANSI/IEEE, 198710.1109/IEEESTD.1988.79638
21 W Voigt. Crystal Physics Textbook. Leipzig and Berlin: B. G. Teubner, 1910
22 W G Cady. Piezoelectricity: An Introduction to the Theory and Applications of Electromechancial Phenomena in Crystals. New York: McGraw-Hill Book Company, Inc., 1946
23 R A Heising. Quartz Crystals for Electrical Circuits, Their Design and Manufacture. New York: D. Van Nostrand Company, Inc., 1946
24 W Mason. Hysteresis Losses in Solid Materials, Piezoelectric Crystals and Their Application in Ultrasonics. New York: Van Nostrand, 1950
25 R D. Mindlin On the equations of motion of piezoelectric crystals. In: Problems of Continuum Mechanics. Philadelphia: SIAM, 1989, 282‒290
26 H F Tiersten, R D Mindlin. Forced vibrations of piezoelectric crystal plates. Quarterly of Applied Mathematics, 1962, 20: 107–119
27 H F Tiersten. Linear Piezoelectric Plate Vibrations: Elements of the Linear Theory of Piezoelectricity and the Vibrations Piezoelectric Plates. New York: Springer, 2013
28 J S Yang. An Introduction to the Theory of Piezoelectricity. Cham: Springer, 2005
29 A Visintin. Differential Models of Hysteresis. Heidelberg: Springer, 1994
30 G M Clayton, S Tien, K K Leang, Q Z Zou, S Devasia. A review of feedforward control approaches in nanopositioning for high-speed SPM. Journal of Dynamic Systems, Measurement, and Control, 2009, 131(6): 061101
https://doi.org/10.1115/1.4000158
31 D V Sabarianand, P Karthikeyan, T Muthuramalingam. A review on control strategies for compensation of hysteresis and creep on piezoelectric actuators based micro systems. Mechanical Systems and Signal Processing, 2020, 140: 106634
https://doi.org/10.1016/j.ymssp.2020.106634
32 Q S Xu. Adaptive integral terminal third-order finite-time sliding-mode strategy for robust nanopositioning control. IEEE Transactions on Industrial Electronics, 2021, 68(7): 6161–6170
https://doi.org/10.1109/TIE.2020.2998751
33 J Ling, Z Feng, D D Zheng, J Yang, H Y Yu, X H Xiao. Robust adaptive motion tracking of piezoelectric actuated stages using online neural-network-based sliding mode control. Mechanical Systems and Signal Processing, 2021, 150: 107235
https://doi.org/10.1016/j.ymssp.2020.107235
34 Z C Qiu, G H Chen, X M Zhang. Trajectory planning and vibration control of translation flexible hinged plate based on optimization and reinforcement learning algorithm. Mechanical Systems and Signal Processing, 2022, 179: 109362
https://doi.org/10.1016/j.ymssp.2022.109362
35 B L Turner, S Senevirathne, K Kilgour, D McArt, M Biggs, S Menegatti, M A Daniele. Ultrasound-powered implants: a critical review of piezoelectric material selection and applications. Advanced Healthcare Materials, 2021, 10(17): 2100986
https://doi.org/10.1002/adhm.202100986
36 M S Vijaya. Piezoelectric Materials and Devices: Applications in Engineering and Medical Sciences. Boca Raton: CRC Press, 2012
37 G D Luan, J D Zhang, R Q Wang. Piezoelectric Transducers and Arrays. Revised ed. Beijing: Peking University Press, 2005 (in Chinese)
38 J C Lindon, G E Tranter, D W Koppenaal. Encyclopedia of Spectroscopy and Spectrometry. 3rd ed. Academic Press, 2017
39 R E Newnham, L E Cross. Ferroelectricity: the foundation of a field from form to function. MRS Bulletin, 2005, 30(11): 845–848
https://doi.org/10.1557/mrs2005.272
40 R Zhang, B Jiang, W W Cao, A Amin. Complete set of material constants of 0.93Pb(Zn1/3Nb2/3)O3-0.07PbTiO3 domain engineered single crystal. Journal of Materials Science Letters, 2002, 21(23): 1877–1879
https://doi.org/10.1023/A:1021573431692
41 Y P Guo, H S Luo, T H He, X M Pan, Z W Yin. Electric-field-induced strain and piezoelectric properties of a high curie temperature Pb(In1/2Nb1/2)O3-PbTiO3 single crystal. Materials Research Bulletin, 2003, 38(5): 857–864
https://doi.org/10.1016/S0025-5408(03)00043-6
42 S E Park, T R Shrout. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. Journal of Applied Physics, 1997, 82(4): 1804–1811
https://doi.org/10.1063/1.365983
43 F Li, M J Cabral, B Xu, Z X Cheng, E C Dickey, J M LeBeau, J L Wang, J Luo, S Taylor, W Hackenberger, L Bellaiche, Z Xu, L Q Chen, T R Shrout, S J Zhang. Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. Science, 2019, 364(6437): 264–268
https://doi.org/10.1126/science.aaw2781
44 C H Nguyen. Interdigital-electrode thin-film piezoelectric microactuators. Dissertation for the Doctoral Degree. Borre: University of South-Eastern Norway, 2018
45 W Zhang, R G Xiong. Ferroelectric metal–organic frameworks. Chemical Reviews, 2012, 112(2): 1163–1195
https://doi.org/10.1021/cr200174w
46 L E Cross, R E Newnham. History of ferroelectrics. Ceramics and Civilization, 1987, 3: 289–305
47 Y Liu, Y Cai, Y Zhang, A Tovstopyat, S Liu, C L Sun. Materials, design, and characteristics of bulk acoustic wave resonator: a review. Micromachines, 2020, 11(7): 630
https://doi.org/10.3390/mi11070630
48 D A Berlincourt, D R Curran, H Jaffe. Piezoelectric and piezomagnetic materials and their function in transducers. Physical Acoustics: Principles and Methods, 1964: 169–270
49 E Sawaguchi. Ferroelectricity versus antiferroelectricity in the solid solutions of PbZrO3 and PbTiO3. Journal of the Physical Society of Japan, 1953, 8(5): 615–629
https://doi.org/10.1143/JPSJ.8.615
50 B Jaffe, R S Roth, S Marzullo. Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics. Journal of Applied Physics, 1954, 25(6): 809–810
https://doi.org/10.1063/1.1721741
51 J L Li, W B Qu, J Daniels, H J Wu, L J Liu, J Wu, M W Wang, S Checchia, S Yang, H B Lei, R Lv, Y Zhang, D Y Wang, X X Li, X D Ding, J Sun, Z Xu, Y F Chang, S J Zhang, F Li. Lead zirconate titanate ceramics with aligned crystallite grains. Science, 2023, 380(6640): 87–93
https://doi.org/10.1126/science.adf6161
52 S D Mahapatra, P C Mohapatra, A I Aria, G Christie, Y K Mishra, S Hofmann, V K Thakur. Piezoelectric materials for energy harvesting and sensing applications: roadmap for future smart materials. Advancement of Science, 2021, 8(17): 2100864
https://doi.org/10.1002/advs.202100864
53 K S Ramadan, D Sameoto, S Evoy. A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Materials and Structures, 2014, 23(3): 033001
https://doi.org/10.1088/0964-1726/23/3/033001
54 J S Harrison, Z Ounaies. Polymers, piezoelectric. In: Schwartz M, ed. Encyclopedia of Smart Materials. John Wiley & Sons, 2002
55 G D Jones, R A Assink, T R Dargaville, P M Chaplya, R L Clough, J M Elliott, J W Martin, D M Mowery, M C Celina. Characterization, Performance and Optimization of PVDF as a Piezoelectric Film for Advanced Space Mirror Concepts. Technical Report SAND2005-6846, 2005
56 Q X Chen, P A Payne. Industrial applications of piezoelectric polymer transducers. Measurement Science & Technology, 1995, 6(3): 249
https://doi.org/10.1088/0957-0233/6/3/001
57 J Y H Kim, A Cheng, Y C Tai. Parylene-C as a piezoelectric material. In: Proceedings of 2011 IEEE the 24th International Conference on Micro Electro Mechanical Systems. Cancun: IEEE, 2011, 473–476
58 C Park, Z Ounaies, K E Wise, J S Harrison. In situ poling and imidization of amorphous piezoelectric polyimides. Polymer, 2004, 45(16): 5417–5425
https://doi.org/10.1016/j.polymer.2004.05.057
59 G Atkinson M, R E Pearson, Z Ounaies, C Park, J S Harrison, S Dogan, J A Midkiff. Novel piezoelectric polyimide MEMS. In: Proceedings of TRANSDUCERS’03. The 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No. 03TH8664). Boston: IEEE, 2003, 782–785
60 K I Park, M Lee, Y Liu, S Moon, G T Hwang, G Zhu, J E Kim, S O Kim, D K Kim, Z L Wang, K J Lee. Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons. Advanced Materials, 2012, 24(22): 2999–3004
https://doi.org/10.1002/adma.201200105
61 K Prashanthi, N Miriyala, R D Gaikwad, W Moussa, V R Rao, T Thundat. Vibtrational energy harvesting using photo-patternable piezoelectric nanocomposite cantilevers. Nano Energy, 2013, 2(5): 923–932
https://doi.org/10.1016/j.nanoen.2013.03.013
62 R E Newnham, D P Skinner, L E Cross. Connectivity and piezoelectric−pyroelectric composites. Materials Research Bulletin, 1978, 13(5): 525–536
https://doi.org/10.1016/0025-5408(78)90161-7
63 G M Sessler, J E West. Self-biased condenser microphone with high capacitance. The Journal of the Acoustical Society of America, 1962, 34(11): 1787–1788
https://doi.org/10.1121/1.1909130
64 A Mohebbi, F Mighri, A Ajji, D Rodrigue. Polymer ferroelectret based on polypropylene foam: piezoelectric properties prediction using dynamic mechanical analysis. Polymers for Advanced Technologies, 2017, 28(4): 476–483
https://doi.org/10.1002/pat.3908
65 P Fang, M Wegener, W Wirges, R Gerhard, L Zirkel. Cellular polyethylene-naphthalate ferroelectrets: foaming in supercritical carbon dioxide, structural and electrical preparation, and resulting piezoelectricity. Applied Physics Letters, 2007, 90(19): 192908
https://doi.org/10.1063/1.2738365
66 M Nakayama, Y Uenaka, S Kataoka, Y Oda, K Yamamoto, Y Tajitsu. Piezoelectricity of ferroelectret porous polyethylene thin film. Japanese Journal of Applied Physics, 2009, 48(9S1): 09KE05
https://doi.org/10.1143/JJAP.48.09KE05
67 L H Kang, J H Han. Prediction of actuation displacement and the force of a pre-stressed piezoelectric unimorph (PUMPS) considering nonlinear piezoelectric coefficient and elastic modulus. Smart Materials and Structures, 2010, 19(9): 094006
https://doi.org/10.1088/0964-1726/19/9/094006
68 Y P Zhu, W J Liu, K M Jia, W J Liao, H K Xie. A piezoelectric unimorph actuator based tip-tilt-piston micromirror with high fill factor and small tilt and lateral shift. Sensors and Actuators A: Physical, 2011, 167(2): 495–501
https://doi.org/10.1016/j.sna.2011.03.018
69 M Bakhtiari-Shahri, H Moeenfard. Energy harvesting from unimorph piezoelectric circular plates under random acoustic and base acceleration excitations. Mechanical Systems and Signal Processing, 2019, 130: 502–523
https://doi.org/10.1016/j.ymssp.2019.05.017
70 X Y Gao, J K Yang, J G Wu, X D Xin, Z M Li, X T Yuan, X Y Shen, S X Dong. Piezoelectric actuators and motors: materials, designs, and applications. Advanced Materials Technologies, 2020, 5(1): 1900716
https://doi.org/10.1002/admt.201900716
71 L Q Yao, J G Zhang, L Lu, M O Lai. Nonlinear static characteristics of piezoelectric bending actuators under strong applied electric field. Sensors and Actuators A: Physical, 2004, 115(1): 168–175
https://doi.org/10.1016/j.sna.2004.04.037
72 Q M Wang, Q M Zhang, B M Xu, R B Liu, L E Cross. Nonlinear piezoelectric behavior of ceramic bending mode actuators under strong electric fields. Journal of Applied Physics, 1999, 86(6): 3352–3360
https://doi.org/10.1063/1.371213
73 B K Taleghani. Validation of high displacement piezoelectric actuator finite element models. In: Proceedings of proceedings of the Fifth European Conference on Smart Structures and Materials. Glasgow: SPIE, 2000, 17–45
74 S Heo, T Wiguna, H C Park, N S Goo. Effect of an artificial caudal fin on the performance of a biomimetic fish robot propelled by piezoelectric actuators. Journal of Bionics Engineering, 2007, 4(3): 151–158
https://doi.org/10.1016/S1672-6529(07)60027-4
75 M Maaspuro. Piezoelectric oscillating cantilever fan for thermal management of electronics and LEDs—a review. Microelectronics Reliability, 2016, 63: 342–353
https://doi.org/10.1016/j.microrel.2016.06.008
76 D O Lee, L H Kang, J H Han. Active vibration isolation demonstration system using the piezoelectric unimorph with mechanically pre-stressed substrate. Journal of Intelligent Material Systems and Structures, 2011, 22(13): 1399–1409
https://doi.org/10.1177/1045389X11411215
77 S J Zhang, H F Zhao, X F Ma, J Deng, Y X Liu. A 3-DOF piezoelectric micromanipulator based on symmetric and antisymmetric bending of a cross-shaped beam. IEEE Transactions on Industrial Electronics, 2023, 70(8): 8264–8275
https://doi.org/10.1109/TIE.2022.3213906
78 X X Zhou, K Li, Y X Liu, J H Sun, H Y Li, W S Chen, J Deng. Development of an antihydropressure miniature underwater robot with multilocomotion mode using piezoelectric pulsed-jet actuator. IEEE Transactions on Industrial Electronics, 2023, 70(5): 5044–5054
https://doi.org/10.1109/TIE.2022.3189088
79 G H Haertling. Rainbow ceramics: a new type of ultra-high-displacement actuator. American Ceramic Society Bulletin, 1994, 73(1): 93–96
80 R F Hellbaum, R G Bryant, R L Fox, N J Jr Antony, W W Rohrbach, J O Simpson. Thin layer composite unimorph ferroelectric driver and sensor. US Patent 6734603 B2, 2004-5-11
81 S A Wise. Displacement properties of RAINBOW and THUNDER piezoelectric actuators. Sensors and Actuators A: Physical, 1998, 69(1): 33–38
https://doi.org/10.1016/S0924-4247(97)01745-7
82 K M Mossi, R P Bishop. Characterization of different types of high-performance THUNDER actuators. In: Proceedings of Smart Structures and Materials 1999: Smart Materials Technologies. Newport Beach: SPIE, 1999, 43–52
83 A Gunda, G Özkayar, M Tichem, M K Ghatkesar. Proportional microvalve using a unimorph piezoelectric microactuator. Micromachines, 2020, 11(2): 130
https://doi.org/10.3390/mi11020130
84 K Roy, J E Y Lee, C K Lee. Thin-film PMUTs: a review of over 40 years of research. Microsystems & Nanoengineering, 2023, 9(1): 95
https://doi.org/10.1038/s41378-023-00555-7
85 P H Ci, L Zhang, G X Liu, S X Dong. Large electrical manipulation of permittivity in BaTiO3 and Pb(Zr,Ti)O3 bimorph heterostructure. Applied Physics Letters, 2014, 105(7): 072903
https://doi.org/10.1063/1.4893614
86 K Uchino. Ferroelectric Devices. 2nd ed. Boca Raton: CRC Press, 2018
87 S A Rios, A J Fleming. A new electrical configuration for improving the range of piezoelectric bimorph benders. Sensors and Actuators A: Physical, 2015, 224: 106–110
https://doi.org/10.1016/j.sna.2015.01.031
88 M Karpelson, G Y Wei, R J Wood. Driving high voltage piezoelectric actuators in microrobotic applications. Sensors and Actuators A: Physical, 2012, 176: 78–89
https://doi.org/10.1016/j.sna.2011.11.035
89 A Ali, R A Pasha, H Elahi, M A Sheeraz, S Bibi, Z U Hassan, M Eugeni, P Gaudenzi. Investigation of deformation in bimorph piezoelectric actuator: analytical, numerical and experimental approach. Integrated Ferroelectrics, 2019, 201(1): 94–109
https://doi.org/10.1080/10584587.2019.1668694
90 B Ghosh, R K Jain, S Majumder, S S Roy, S Mukhopadhyay. Experimental characterizations of bimorph piezoelectric actuator for robotic assembly. Journal of Intelligent Material Systems and Structures, 2017, 28(15): 2095–2109
https://doi.org/10.1177/1045389X16685441
91 R K Jain, S Majumder, B Ghosh, S Saha. Design and manufacturing of mobile micro manipulation system with a compliant piezoelectric actuator based micro gripper. Journal of Manufacturing Systems, 2015, 35: 76–91
https://doi.org/10.1016/j.jmsy.2014.12.001
92 A J Hall, J C Riddick. Micro-electro-mechanical flapping wing technology for micro air vehicles. In: Proceedings of Bioinspiration, Biomimetics, and Bioreplication. San Diego: SPIE, 2012, 83390L
93 J Hu, S Chen, L Wang. A new insect-scale piezoelectric robot with asymmetric structure. IEEE Transactions on Industrial Electronics, 2023, 70(8): 8194–8202
https://doi.org/10.1109/TIE.2022.3213887
94 Y Z Liu, Z W Hao, J X Yu, X R Zhou, P S Lee, Y Sun, Z C Mu, F L Zeng. A high-performance soft actuator based on a poly (vinylidene fluoride) piezoelectric bimorph. Smart Materials and Structures, 2019, 28(5): 055011
https://doi.org/10.1088/1361-665X/ab0844
95 M U Khan, Z Butt, H Elahi, W Asghar, Z Abbas, M Shoaib, M A Bashir. Deflection of coupled elasticity–electrostatic bimorph PVDF material: theoretical, FEM and experimental verification. Microsystem Technologies, 2019, 25(8): 3235–3242
https://doi.org/10.1007/s00542-018-4182-x
96 Y H Yuan, K Shyong Chow, H J Du, P H Wang, M S Zhang, S K Yu, B Liu. A ZnO thin-film driven microcantilever for nanoscale actuation and sensing. International Journal of Smart and Nano Materials, 2013, 4(2): 128–141
https://doi.org/10.1080/19475411.2012.749959
97 R Moradi-Dastjerdi, S A Meguid, S Rashahmadi. Dynamic behavior of novel micro fuel pump using zinc oxide nanocomposite diaphragm. Sensors and Actuators A: Physical, 2019, 297: 111528
https://doi.org/10.1016/j.sna.2019.111528
98 I A Ivan, M Rakotondrabe, J Agnus, R Bourquin, N Chaillet, P Lutz, J C Poncot, R Duffait, O Bauer. Comparative material study between PZT ceramic and newer crystalline PMN-PT and PZN-PT mateirals for composite bimorph actuators. Reviews on Advanced Materials Science, 2010, 24(15–16): 1–9
99 A Kulikov, A Blagov, N Marchenkov, A Targonsky, Y Eliovich, Y Pisarevsky, M Kovalchuk. LiNbO3-based bimorph piezoactuator for fast X-ray experiments: static and quasistatic modes. Sensors and Actuators A: Physical, 2019, 291: 68–74
https://doi.org/10.1016/j.sna.2019.03.041
100 S T Ho, S J Jan. A piezoelectric motor for precision positioning applications. Precision Engineering, 2016, 43: 285–293
https://doi.org/10.1016/j.precisioneng.2015.08.007
101 Y Zhang, W J Zhang, J Hesselbach, H Kerle. Development of a two-degree-of-freedom piezoelectric rotary-linear actuator with high driving force and unlimited linear movement. Review of Scientific Instruments, 2006, 77(3): 035112
https://doi.org/10.1063/1.2185500
102 L Tolliver, T B Xu, X N Jiang. Finite element analysis of the piezoelectric stacked-HYBATS transducer. Smart Materials and Structures, 2013, 22(3): 035015
https://doi.org/10.1088/0964-1726/22/3/035015
103 B Sahoo, P K Panda. Fabrication of simple and ring-type piezo actuators and their characterization. Smart Materials Research, 2012, 2012: 821847
https://doi.org/10.1155/2012/821847
104 X Y Gao, X D Xin, J G Wu, Z Q Chu, S X Dong. A multilayered-cylindrical piezoelectric shear actuator operating in shear (d15) mode. Applied Physics Letters, 2018, 112(15): 152902
https://doi.org/10.1063/1.5022726
105 H H Huang, L F Wang, Y Wu. Design and experimental research of a rotary micro-actuator based on a shearing piezoelectric stack. Micromachines, 2019, 10(2): 96
https://doi.org/10.3390/mi10020096
106 X N Jiang, P W Rehrig, W S Hackenberger, E Smith, S X Dong, D Viehland, J Moore Jr, B Patrick. Advanced piezoelectric single crystal based actuators. In: Proceedings of Smart Structures and Materials 2005: Active Materials: Behavior and Mechanics. San Diego: SPIE, 2005, 253–262
107 R B Liu, Q M Wang, Q M Zhang, L E Cross. Piezoelectric pseudo-shear mode actuator made by L-shape joint bonding. Journal of Materials Science Materials in Electronics, 1998, 9(6): 453–456
https://doi.org/10.1023/A:1008902108775
108 M DeMiguel-Ramos, B Díaz-Durán, J M Escolano, M Barba, T Mirea, J Olivares, M Clement, E Iborra. Gravimetric biosensor based on a 1.3 GHz AlN shear-mode solidly mounted resonator. Sensors and Actuators B: Chemical, 2017, 239: 1282–1288
https://doi.org/10.1016/j.snb.2016.09.079
109 F Claeyssen, R L Letty, F Barillot, O Sosnicki. Amplified piezoelectric actuators: static & dynamic applications. Ferroelectrics, 2007, 351(1): 3–14
https://doi.org/10.1080/00150190701351865
110 F X Chen, Y Z Gao, W Dong, Z J Du. Design and control of a passive compliant piezo-actuated micro-gripper with hybrid flexure hinges. IEEE Transactions on Industrial Electronics, 2021, 68(11): 11168–11177
https://doi.org/10.1109/TIE.2020.3032921
111 R D Dsouza, K P Navin, T Theodoridis, P Sharma. Design, fabrication and testing of a 2 DOF compliant flexural microgripper. Microsystem Technologies, 2018, 24(9): 3867–3883
https://doi.org/10.1007/s00542-018-3861-y
112 Q S Xu. Design and smooth position/force switching control of a miniature gripper for automated microhandling. IEEE Transactions on Industrial Informatics, 2014, 10(2): 1023–1032
https://doi.org/10.1109/TII.2013.2290895
113 X T Sun, W H Chen, Y L Tian, S Fatikow, R Zhou, J B Zhang, M Mikczinski. A novel flexure-based microgripper with double amplification mechanisms for micro/nano manipulation. Review of Scientific Instruments, 2013, 84(8): 085002
https://doi.org/10.1063/1.4817695
114 Y L Tian, B Shirinzadeh, D W Zhang, G Alici. Development and dynamic modelling of a flexure-based Scott–Russell mechanism for nano-manipulation. Mechanical Systems and Signal Processing, 2009, 23(3): 957–978
https://doi.org/10.1016/j.ymssp.2008.06.007
115 Q G Wu, D H Yang, A H Li, G H Zhou, B T Yang. Design and test of a novel cost-effective piezo driven actuator with a two-stage flexure amplifier for chopping mirrors. In: Proceedings of Modern Technologies in Space- and Ground-based Telescopes and Instrumentation II. Amsterdam: SPIE, 2012, 84505G
116 T W Na, J H Choi, J Y Jung, H G Kim, J H Han, K C Park, I K Oh. Compact piezoelectric tripod manipulator based on a reverse bridge-type amplification mechanism. Smart Materials and Structures, 2016, 25(9): 095028
https://doi.org/10.1088/0964-1726/25/9/095028
117 F X Chen, Z J Du, M Yang, F T Gao, W Dong, D Zhang. Design and analysis of a three-dimensional bridge-type mechanism based on the stiffness distribution. Precision Engineering, 2018, 51: 48–58
https://doi.org/10.1016/j.precisioneng.2017.07.010
118 J Juuti, K Kordás, R Lonnakko, V P Moilanen, S Leppävuori. Mechanically amplified large displacement piezoelectric actuators. Sensors and Actuators A: Physical, 2005, 120(1): 225–231
https://doi.org/10.1016/j.sna.2004.11.016
119 C M Chen, Y C Hsu, R F Fung. System identification of a Scott–Russell amplifying mechanism with offset driven by a piezoelectric actuator. Applied Mathematical Modelling, 2012, 36(6): 2788–2802
https://doi.org/10.1016/j.apm.2011.09.064
120 T Sashida, T Kenjo. An Introduction to Ultrasonic Motors. Oxford: Clarendon Press, 1993
121 C S Zhao. Ultrasonic Motors: Technologies and Applications. Heidelberg: Springer, 2011
122 S Izuhara, T Mashimo. Design and characterization of a thin linear ultrasonic motor for miniature focus systems. Sensors and Actuators A: Physical, 2021, 329: 112797
https://doi.org/10.1016/j.sna.2021.112797
123 K Uchino. Piezoelectric ultrasonic motors: overview. Smart Materials and Structures, 1998, 7(3): 273
https://doi.org/10.1088/0964-1726/7/3/002
124 K Uchino. Piezoelectric Actuators and Ultrasonic Motors. New York: Springer, 1996
125 S Y Li, W C Ou, M Yang, C Guo, C Y Lu, J H Hu. Temperature evaluation of traveling-wave ultrasonic motor considering interaction between temperature rise and motor parameters. Ultrasonics, 2015, 57: 159–166
https://doi.org/10.1016/j.ultras.2014.11.007
126 R Ryndzionek, Ł Sienkiewicz. A review of recent advances in the single- and multi-degree-of-freedom ultrasonic piezoelectric motors. Ultrasonics, 2021, 116: 106471
https://doi.org/10.1016/j.ultras.2021.106471
127 P H Ci, G X Liu, Z J Chen, S X Dong. A standing wave linear ultrasonic motor operating in face-diagonal-bending mode. Applied Physics Letters, 2013, 103(10): 102904
https://doi.org/10.1063/1.4820778
128 L Wang, J K Liu, Y X Liu, X Q Tian, J P Yan. A novel single-mode linear piezoelectric ultrasonic motor based on asymmetric structure. Ultrasonics, 2018, 89: 137–142
https://doi.org/10.1016/j.ultras.2018.05.010
129 Y X Liu, S J Shi, C H Li, W S Chen, J K Liu. A novel standing wave linear piezoelectric actuator using the longitudinal-bending coupling mode. Sensors and Actuators A: Physical, 2016, 251: 119–125
https://doi.org/10.1016/j.sna.2016.10.015
130 S P He, S J Shi, Y H Zhang, W S Chen. Design and experimental research on a deep-sea resonant linear ultrasonic motor. IEEE Access, 2018, 6: 57249–57256
https://doi.org/10.1109/ACCESS.2018.2873745
131 Y Jian, Z Y Yao, V V Silberschmidt. Linear ultrasonic motor for absolute gravimeter. Ultrasonics, 2017, 77: 88–94
https://doi.org/10.1016/j.ultras.2017.01.023
132 C H Yeh, F C Su, Y S Shan, M Dosaev, Y Selyutskiy, I Goryacheva, M S Ju. Application of piezoelectric actuator to simplified haptic feedback system. Sensors and Actuators A: Physical, 2020, 303: 111820
https://doi.org/10.1016/j.sna.2019.111820
133 Q Zhang, W S Chen, Y X Liu, J K Liu, Q Jiang. A frog-shaped linear piezoelectric actuator using first-order longitudinal vibration mode. IEEE Transactions on Industrial Electronics, 2017, 64(3): 2188–2195
https://doi.org/10.1109/TIE.2016.2626242
134 B L Zhang, Z Y Yao, Z Liu, X N Li. A novel L-shaped linear ultrasonic motor operating in a single resonance mode. Review of Scientific Instruments, 2018, 89(1): 015006
https://doi.org/10.1063/1.5011427
135 Y X Liu, W S Chen, J K Liu, S J Shi. A cylindrical standing wave ultrasonic motor using bending vibration transducer. Ultrasonics, 2011, 51(5): 527–531
https://doi.org/10.1016/j.ultras.2010.12.007
136 J K Liu, T Xie, W S Chen, C H Jia. A standing wave ultrasonic motor using longitudinal vibration transducers. Key Engineering Materials, 2011, 474–476: 661–665
137 V Dabbagh, A A D Sarhan, J Akbari, N A Mardi. Design and experimental evaluation of a precise and compact tubular ultrasonic motor driven by a single-phase source. Precision Engineering, 2017, 48: 172–180
https://doi.org/10.1016/j.precisioneng.2016.11.018
138 P Q Fan, X C Shu, T Yuan, C D Li. A novel high thrust–weight ratio linear ultrasonic motor driven by single-phase signal. Review of Scientific Instruments, 2018, 89(8): 085001
https://doi.org/10.1063/1.5037407
139 C H Yeh, F C Su, Y S Shan, M Dosaev, Y Selyutskiy, I Goryacheva, M S Ju. Application of piezoelectric actuator to simplified haptic feedback system. Sensors and Actuators A: Physical, 2020, 303: 111820
https://doi.org/10.1016/j.sna.2019.111820
140 T J Peng, X Y Wu, X Liang, H Y Shi, F Luo. Investigation of a rotary ultrasonic motor using a longitudinal vibrator and spiral fin rotor. Ultrasonics, 2015, 61: 157–161
https://doi.org/10.1016/j.ultras.2015.04.013
141 Y Doshida, H Tamura, S Tanaka. High-power properties of crystal-oriented (Sr,Ca)2NaNb5O15 piezoelectric ceramics and their application to ultrasonic motors. Japanese Journal of Applied Physics, 2019, 58(SG): SGGA07
https://doi.org/10.7567/1347-4065/ab0bad
142 K Uchino, S Cagatay, B Koc, S Dong, P Bouchilloux, M Strauss. Micro piezoelectric ultrasonic motors. Journal of Electroceramics, 2004, 13(1–3): 393–401
https://doi.org/10.1007/s10832-004-5131-x
143 Y N Zhou, J J Chang, X X Liao, Z H Feng. Ring-shaped traveling wave ultrasonic motor for high-output power density with suspension stator. Ultrasonics, 2020, 102: 106040
https://doi.org/10.1016/j.ultras.2019.106040
144 W S Chen, Y X Liu, X H Yang, J K Liu. Ring-type traveling wave ultrasonic motor using a radial bending mode. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61(1): 197–202
https://doi.org/10.1109/TUFFC.2014.6689788
145 H Y Sun, H Yin, J Liu, X L Zhang. Preload optimization method for traveling-wave rotary ultrasonic motor. Processes, 2021, 9(7): 1164
https://doi.org/10.3390/pr9071164
146 B T Jia, L Wang, R F Wang, J M Jin, Z H Zhao, D W Wu. A novel traveling wave piezoelectric actuated wheeled robot: design, theoretical analysis, and experimental investigation. Smart Materials and Structures, 2021, 30(3): 035016
https://doi.org/10.1088/1361-665X/abdc0a
147 J Zhang, X Z Wang. Design and experimental study of ultrasonic vibration feeding device with double symmetrical structure. IEEE Access, 2022, 10: 63481–63495
https://doi.org/10.1109/ACCESS.2022.3182095
148 K Uchino. Piezoelectric motors for camera modules. In: Proceedings of International Conference on New Actuators. Bremen: International Center for Actuators and Transducers, 2008
149 Z Li, Z Wang, P Guo, L Zhao, Q J Wang. A ball-type multi-DOF ultrasonic motor with three embedded traveling wave stators. Sensors and Actuators A: Physical, 2020, 313: 112161
https://doi.org/10.1016/j.sna.2020.112161
150 W H Ren, M J Yang, L Chen, C C Ma, L Yang. Mechanical optimization of a novel hollow traveling wave rotary ultrasonic motor. Journal of Intelligent Material Systems and Structures, 2020, 31(8): 1091–1100
https://doi.org/10.1177/1045389X20910263
151 K Uchino. Piezoelectric actuators 2006. Journal of Electroceramics, 2008, 20(3–4): 301–311
https://doi.org/10.1007/s10832-007-9196-1
152 Z Y Pan, L Wang, Y Yang, J M Jin, J M Qiu. A novel bonded-type 3-degree-of-freedom ultrasonic motor: design, simulation, and experimental investigation. Smart Materials and Structures, 2023, 32(6): 065010
https://doi.org/10.1088/1361-665X/acd03c
153 J W Leng, L Jin, X X Dong, H B Zhang, C L Liu, Z K Xu. A multi-degree-of-freedom clamping type traveling-wave ultrasonic motor. Ultrasonics, 2022, 119: 106621
https://doi.org/10.1016/j.ultras.2021.106621
154 D Sun, Y J Tang, J Wang, X J Wang. A novel fixable cylindrical ultrasonic motor. Advances in Mechanical Engineering, 2019, 11(3): 1–7
https://doi.org/10.1177/1687814019829984
155 J Liu, Z J Niu, H Zhu, C S Zhao. Design and experiment of a large-aperture hollow traveling wave ultrasonic motor with low speed and high torque. Applied Sciences, 2019, 9(19): 3979
https://doi.org/10.3390/app9193979
156 R K Niu, J Liu, H Zhu, C S Zhao. Design and evaluation of a novel light arc-shaped ultrasonic motor. AIP Advances, 2019, 9(6): 065009
https://doi.org/10.1063/1.5100794
157 Y Chen, Q L Liu, T Y Zhou. A traveling wave ultrasonic motor of high torque. Ultrasonics, 2006, 44: e581–e584
https://doi.org/10.1016/j.ultras.2006.05.055
158 J N Cai, F X Chen, L N Sun, W Dong. Design of a linear walking stage based on two types of piezoelectric actuators. Sensors and Actuators A: Physical, 2021, 332: 112067
https://doi.org/10.1016/j.sna.2020.112067
159 C L Pan, T Zhang, T L Dai, L L Han, H J Xia, L D Yu. Design and simulation of a 2-DOF parallel linear precision platform utilizing piezoelectric impact drive mechanism. In: Proceedings of the 10th International Symposium on Precision Engineering Measurements and Instrumentation. Kunming: SPIE, 2019, 110534B
160 J M Breguet, R Clavel. Stick and slip actuators: design, control, performances and applications. In: Proceedings of the 1998 International Symposium on Micromechatronics and Human Science. Creation of New Industry (Cat. No. 98TH8388). Nagoya: IEEE, 1998, 89–95
161 J P Li, H Huang, T Morita. Stepping piezoelectric actuators with large working stroke for nano-positioning systems: a review. Sensors and Actuators A: Physical, 2019, 292: 39–51
https://doi.org/10.1016/j.sna.2019.04.006
162 W H Liu, Y Wang, W Q Huang, Q J Ding. A linear stepping piezoelectric motor using inertial impact driving. Applied Mechanics and Materials, 2012, 226–228: 693–696
163 Q S Pan, L G He, C L Pan, G J Xiao, Z H Feng. Resonant-type inertia linear motor based on the harmonic vibration synthesis of piezoelectric bending actuator. Sensors and Actuators A: Physical, 2014, 209: 169–174
https://doi.org/10.1016/j.sna.2014.01.027
164 N Jiang, J B Liu, T Tao, L Han. Motion characteristics of a rotary piezo impact drive mechanism. In: Proceedings of International Conference on Smart Materials and Nanotechnology in Engineering. Harbin: SPIE, 2007, 642324
165 S M Hua, G M Cheng, Z Y Zhang, P Zeng. Precise impact drive mechanism based on asymmetrically clamped piezoelectric actuator. Applied Mechanics and Materials, 2010, 37–38: 870–874
166 J M Wen, J J Ma, P Zeng, G M Cheng, Z H Zhang. A new inertial piezoelectric rotary actuator based on changing the normal pressure. Microsystem Technologies, 2013, 19(2): 277–283
https://doi.org/10.1007/s00542-012-1684-9
167 Y Yamagata, T Higuchi, H Saeki, H Ishimaru. Ultrahigh vacuum precise positioning device utilizing rapid deformations of piezoelectric elements. Journal of Vacuum Science & Technology A, 1990, 8(6): 4098–4100
https://doi.org/10.1116/1.576446
168 T Higuchi. Micro actuators using recoil of an ejected mass. IEEE Micro Robot and Teleoperators Workshop Proceedings, 1987, 16–21
169 H Yokozawa, T Morita. Wireguide driving actuator using resonant-type smooth impact drive mechanism. Sensors and Actuators A: Physical, 2015, 230: 40–44
https://doi.org/10.1016/j.sna.2015.04.012
170 Y X Peng, L Liu, Y K Zhang, J Cao, Y Cheng, J Wang. A smooth impact drive mechanism actuation method for flapping wing mechanism of bio-inspired micro air vehicles. Microsystem Technologies, 2018, 24(2): 935–941
https://doi.org/10.1007/s00542-017-3421-x
171 M H Park, H H Chong, B H Lee, S S Jeong, T G Park. Study on the new type of piezoelectric actuator utilizing smooth impact drive mechanism. Ferroelectrics, 2016, 500: 218–228
https://doi.org/10.1080/00150193.2016.1216228
172 T Morita, R Yoshida, Y Okamoto, M K Kurosawa, T Higuchi. A smooth impact rotation motor using a multi-layered torsional piezoelectric actuator. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1999, 46(6): 1439–1445
https://doi.org/10.1109/58.808867
173 R Yoshida, Y Okamoto, T Higuchi, A Hamamatsu. Development of smooth impact drive mechanism (SIDM). Journal of the Japan Society for Precision Engineering, 1999, 65(1): 111–115
https://doi.org/10.2493/jjspe.65.111
174 J Deng, S H Liu, Y X Liu, L Wang, X Gao, K Li. A 2-DOF needle insertion device using inertial piezoelectric actuator. IEEE Transactions on Industrial Electronics, 2022, 69(4): 3918–3927
https://doi.org/10.1109/TIE.2021.3073313
175 J Lee, W S Kwon, K S Kim, S Kim. A novel smooth impact drive mechanism actuation method with dual-slider for a compact zoom lens system. Review of Scientific Instruments, 2011, 82(8): 085105
https://doi.org/10.1063/1.3624701
176 D Mazeika, P Vasiljev, S Borodinas, R Bareikis, Y Yang. Small size piezoelectric impact drive actuator with rectangular bimorphs. Sensors and Actuators A: Physical, 2018, 280: 76–84
https://doi.org/10.1016/j.sna.2018.07.015
177 M Hunstig, T Hemsel, W Sextro. Stick–slip and slip–slip operation of piezoelectric inertia drives—Part II: frequency-limited excitation. Sensors and Actuators A: Physical, 2013, 200: 79–89
https://doi.org/10.1016/j.sna.2012.11.043
178 M Hunstig, T Hemsel, W Sextro. Stick–slip and slip–slip operation of piezoelectric inertia drives. Part I: ideal excitation. Sensors and Actuators A: Physical, 2013, 200: 90–100
https://doi.org/10.1016/j.sna.2012.11.012
179 T H Cheng, X H Lu, H W Zhao, D Chen, P He, L Wang, X L Zhao. Performance improvement of smooth impact drive mechanism at low voltage utilizing ultrasonic friction reduction. Review of Scientific Instruments, 2016, 87(8): 085007
https://doi.org/10.1063/1.4960392
180 H Y Li, Y K Li, T H Cheng, X H Lu, H W Zhao, H B Gao. A symmetrical hybrid driving waveform for a linear piezoelectric stick–slip actuator. IEEE Access, 2017, 5: 16885–16894
https://doi.org/10.1109/ACCESS.2017.2744498
181 H Y Fan, J Y Tang, T Li, X F Yang, J H Liu, W X Guo, H Huang. Active suppression of the backward motion in a parasitic motion principle (PMP) piezoelectric actuator. Smart Materials and Structures, 2019, 28(12): 125006
https://doi.org/10.1088/1361-665X/ab4e07
182 J Deng, Y X Liu, J Li, S J Zhang, K Li. Displacement linearity improving method of stepping piezoelectric platform based on leg wagging mechanism. IEEE Transactions on Industrial Electronics, 2022, 69(6): 6429–6432
https://doi.org/10.1109/TIE.2021.3094477
183 X Huang, Y L Hu, J J Ma, J P Li, H Lin, J M Wen. An inertial piezoelectric rotary actuator based on active friction regulation using magnetic force. Smart Materials and Structures, 2021, 30(9): 095014
https://doi.org/10.1088/1361-665X/ac17a0
184 J S Koh, K J Cho. Omegabot: biomimetic inchworm robot using SMA coil actuator and smart composite microstructures (SCM). In: Proceedings of 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO). Guilin: IEEE, 2009, 1154–1159
185 L Ma, J T Xiao, S S Zhou, L N Sun. A piezoelectric inchworm actuator of linear type using symmetrical lever amplification. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2015, 229(4): 172–179
https://doi.org/10.1177/1740349914531567
186 Y X Peng, Y L Peng, X Y Gu, J Wang, H Y Yu. A review of long range piezoelectric motors using frequency leveraged method. Sensors and Actuators A: Physical, 2015, 235: 240–255
https://doi.org/10.1016/j.sna.2015.10.015
187 G R Stibitz. Incremental feed mechanisms. US Patent, 3138749, 1964-6-23
188 B A Douglas. Position control device. US Patent, 3377489A, 1968-4-9
189 J P Li, J M Wen, Y L Hu, Z H Zhang, L D He, N Wan. Principle, design and future of inchworm type piezoelectric actuators. In: Huang H, Li J P, eds. Piezoelectric Actuators. Rijeka: IntechOpen, 2021
190 S K HsuB Albert. Transducer. US Patent, 3292019, 1966-12-13
191 T Fujimoto. Linear motor driving device. US Patent, 4736131, 1988-4-5
192 Y W Kim, S C Choi, J W Park, Y H Jung, D W Lee. The characteristics of variable speed inchworm stage using lever mechanism by different materials. Journal of Nanoscience and Nanotechnology, 2008, 8(11): 5696–5701
https://doi.org/10.1166/jnn.2008.249
193 S P Wang, W B Rong, L F Wang, Z C Pei, L N Sun. A novel inchworm type piezoelectric rotary actuator with large output torque: design, analysis and experimental performance. Precision Engineering, 2018, 51: 545–551
https://doi.org/10.1016/j.precisioneng.2017.10.010
194 C H Oh, J H Choi, H J Nam, J U Bu, S H Kim. Ultra-compact, zero-power magnetic latching piezoelectric inchworm motor with integrated position sensor. Sensors and Actuators A: Physical, 2010, 158(2): 306–312
https://doi.org/10.1016/j.sna.2010.01.022
195 X Q Tian, Q Q Quan, L Wang, Q Su. An inchworm type piezoelectric actuator working in resonant state. IEEE Access, 2018, 6: 18975–18983
https://doi.org/10.1109/ACCESS.2018.2814010
196 X F Ma, Y X Liu, J Deng, X Gao, J F Cheng. A compact inchworm piezoelectric actuator with high speed: design, modeling, and experimental evaluation. Mechanical Systems and Signal Processing, 2023, 184: 109704
https://doi.org/10.1016/j.ymssp.2022.109704
197 J P Li, H W Zhao, X T Qu, H Qu, X Q Zhou, Z Q Fan, Z C Ma, H S Fu. Development of a compact 2-DOF precision piezoelectric positioning platform based on inchworm principle. Sensors and Actuators A: Physical, 2015, 222: 87–95
https://doi.org/10.1016/j.sna.2014.12.001
198 Y Wang, P Yan. A novel bidirectional complementary-type inchworm actuator with parasitic motion based clamping. Mechanical Systems and Signal Processing, 2019, 134: 106360
https://doi.org/10.1016/j.ymssp.2019.106360
199 R Toda, E H Yang. A normally latched, large-stroke, inchworm microactuator. Journal of Micromechanics and Microengineering, 2007, 17(8): 1715
https://doi.org/10.1088/0960-1317/17/8/039
200 T Galante, J Frank, J Bernard, W Chen, G A Lesieutre, G H Koopmann. Design, modeling, and performance of a high force piezoelectric inchworm motor. Journal of Intelligent Material Systems and Structures, 1999, 10(12): 962–972
https://doi.org/10.1106/21LN-RUYY-35CH-C1FD
201 J P Li, L D He, J J Cai, Y L Hu, J M Wen, J J Ma, W Wan. A walking type piezoelectric actuator based on the parasitic motion of obliquely assembled PZT stacks. Smart Materials and Structures, 2021, 30(8): 085030
https://doi.org/10.1088/1361-665X/ac09a0
202 D Kang, J Kim, M G Lee, D Gweon. Development of compact high precision two degree of freedom XY piezoelectric stepping positioner. Review of Scientific Instruments, 2008, 79(2): 026110
https://doi.org/10.1063/1.2841807
203 O Fuchiwaki, K Arafuka, S Omura. Development of 3-DOF inchworm mechanism for flexible, compact, low-inertia, and omnidirectional precise positioning: dynamical analysis and improvement of the maximum velocity within no slip of electromagnets. IEEE/ASME Transactions on Mechatronics, 2012, 17(4): 697–708
https://doi.org/10.1109/TMECH.2011.2118764
204 M Tahmasebipour, M Sangchap. A novel high performance integrated two-axis inchworm piezoelectric motor. Smart Materials and Structures, 2020, 29(1): 015034
https://doi.org/10.1088/1361-665X/ab545e
205 X F Ma, Y X Liu, J Deng, S J Zhang, J K Liu. A walker-pusher inchworm actuator driven by two piezoelectric stacks. Mechanical Systems and Signal Processing, 2022, 169: 108636
https://doi.org/10.1016/j.ymssp.2021.108636
206 Piezo Drive. Specifications of actuators. Available at PiezoDrive website, 2023-5-30
207 International Ltd APC. Specifications of actuators. Available at APC International Ltd. website, 2023-5-30
208 Instrumente Physik. Specifications of P-series actuators. Available at Physik Instrumente (PI) GmbH & Co. website, 2023-5-30
209 Noliac. Specifications of actuators. Avialable at CTS Corporation website, 2023-5-30
210 COREMORROW. Technical data of PSt series actuators. Available at Harbin Core Tomorrow Science and Technology Co., Ltd. website, 2023-5-30
211 Inc Piezo. Piezoelectric actuators & motors. Available at Piezo website, 2023-5-30
[1] Jie GAO, Mi XIAO, Zhi YAN, Liang GAO, Hao LI. Robust isogeometric topology optimization for piezoelectric actuators with uniform manufacturability[J]. Front. Mech. Eng., 2022, 17(2): 27-.
[2] Meiju YANG,Chunxia LI,Guoying GU,Limin ZHU. A rate-dependent Prandtl-Ishlinskii model for piezoelectric actuators using the dynamic envelope function based play operator[J]. Front. Mech. Eng., 2015, 10(1): 37-42.
[3] Jinhao QIU, Hongli JI, Kongjun ZHU. Semi-active vibration control using piezoelectric actuators in smart structures[J]. Front Mech Eng Chin, 2009, 4(3): 242-251.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed