|
|
Multi-Material magnetic field-assisted additive manufacturing system for flexible actuators with programmable magnetic arrangements |
Yujie HUANG1,2, Haonan SUN1,2, Chengqian ZHANG1,3( ), Ruoxiang GAO1,2, Hongyao SHEN1,2, Peng ZHAO1,2( ) |
1. The State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China 2. The Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China 3. Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract Manufacturing flexible magnetic-driven actuators with complex structures and magnetic arrangements to achieve diverse functionalities is becoming a popular trend. Among various manufacturing technologies, magnetic-assisted digital light processing (DLP) stands out because it enables precise manufacturing of macro-scale structures and micro-scale distributions with the assistance of an external magnetic field. Current research on manufacturing magnetic flexible actuators mostly employs single materials, which limits the magnetic driving performance to some extent. Based on these characterizations, we propose a multi-material magnetic field-assisted DLP technology to produce flexible actuators with an accuracy of 200 μm. The flexible actuators are printed using two materials with different mechanical and magnetic properties. Considering the interface connectivity of multi-material printing, the effect of interfaces on mechanical properties is also explored. Experimental results indicate good chemical affinity between the two materials we selected. The overlap or connection length of the interface moderately improves the tensile strength of multi-material structures. In addition, we investigate the influence of the volume fraction of the magnetic part on deformation. Simulation and experimental results indicate that increasing the volume ratio (20% to 50%) of the magnetic structure can enhance the responsiveness of the actuator (more than 50%). Finally, we successfully manufacture two multi-material flexible actuators with specific magnetic arrangements: a multi-legged crawling robot and a flexible gripper capable of crawling and grasping actions. These results confirm that this method will pave the way for further research on the precise fabrication of magnetic flexible actuators with diverse functionalities.
|
Keywords
multi-material
magnetic field-assisted manufacturing
digital light processing
flexible actuators
magnetic arrangement
|
Corresponding Author(s):
Chengqian ZHANG,Peng ZHAO
|
About author: #usheng Xing, Yannan Jian and Xiaodan Zhao contributed equally to this work.]]> |
Just Accepted Date: 09 April 2024
Issue Date: 30 May 2024
|
|
1 |
Y F Zhang , C J X Ng , Z Chen , W Zhang , S Panjwani , K Kowsari , H Y Yang , Q Ge . Miniature pneumatic actuators for soft robots by high-resolution multimaterial 3D printing. Advanced Materials Technologies, 2019, 4(10): 1900427
https://doi.org/10.1002/admt.201900427
|
2 |
Y Dong , L Wang , N Xia , Z X Yang , C Zhang , C F Pan , D Jin , J C Zhang , C Majidi , L Zhang . Untethered small-scale magnetic soft robot with programmable magnetization and integrated multifunctional modules. Science Advances, 2022, 8(25): eabn8932
https://doi.org/10.1126/sciadv.abn8932
|
3 |
Y Kim , G A Parada , S D Liu , X H Zhao . Ferromagnetic soft continuum robots. Science Robotics, 2019, 4(33): eaax7329
https://doi.org/10.1126/scirobotics.aax7329
|
4 |
H J Lu , Y Hong , Y Yang , Z B Yang , Y J Shen . Battery-less soft millirobot that can move, sense, and communicate remotely by coupling the magnetic and piezoelectric effects. Advanced Science, 2020, 7(13): 2000069
https://doi.org/10.1002/advs.202000069
|
5 |
H Z Dai , C Q Zhang , C F Pan , H Hu , K P Ji , H N Sun , C X Lyu , D F Tang , T F Li , J Z Fu , P Zhao . Split-type magnetic soft tactile sensor with 3D force decoupling. Advanced Materials, 2024, 36(11): 2310145
https://doi.org/10.1002/adma.202310145
|
6 |
X Y Hu , Z X Ge , X D Wang , N D Jiao , S Tung , L Q Liu . Multifunctional thermo-magnetically actuated hybrid soft millirobot based on 4D printing. Composites Part B: Engineering, 2022, 228: 109451
https://doi.org/10.1016/j.compositesb.2021.109451
|
7 |
H J Lu , M Zhang , Y Y Yang , Q Huang , T Fukuda , Z K Wang , Y J Shen . A bioinspired multilegged soft millirobot that functions in both dry and wet conditions. Nature Communications, 2018, 9(1): 3944
https://doi.org/10.1038/s41467-018-06491-9
|
8 |
Y D Wu , X G Dong , J K Kim , C X Wang , M Sitti . Wireless soft millirobots for climbing three-dimensional surfaces in confined spaces. Science Advances, 2022, 8(21): eabn3431
https://doi.org/10.1126/sciadv.abn3431
|
9 |
G Kocak , C Tuncer , V Bütün . pH-responsive polymers. Polymer Chemistry, 2017, 8(1): 144–176
https://doi.org/10.1039/C6PY01872F
|
10 |
Z Q Zhang , R F Wang , M F Yuan , X Z Huang , C Ding , H P Wu , S L Wang , A P Liu . Magnetically driven pH-responsive composite hydrogel for controlled drug delivery. Functional Materials Letters, 2022, 15(5): 2250022
https://doi.org/10.1142/S1793604722500229
|
11 |
B J Jin , H J Song , R Q Jiang , J Z Song , Q Zhao , T Xie . Programming a crystalline shape memory polymer network with thermo- and photo-reversible bonds toward a single-component soft robot. Science Advances, 2018, 4(1): eaao3865
https://doi.org/10.1126/sciadv.aao3865
|
12 |
K K Liu , Y Zhang , H Q Cao , H N Liu , Y H Geng , W H Yuan , J Zhou , Z L Wu , G R Shan , Y Z Bao , Q Zhao , T Xie , P J Pan . Programmable reversible shape transformation of hydrogels based on transient structural anisotropy. Advanced Materials, 2020, 32(28): 2001693
https://doi.org/10.1002/adma.202001693
|
13 |
D Wang , H P Xu , J Q Wang , C R Jiang , X Y Zhu , Q Ge , G Y Gu . Design of 3D printed programmable horseshoe lattice structures based on a phase-evolution model. ACS Applied Materials & Interfaces, 2020, 12(19): 22146–22156
https://doi.org/10.1021/acsami.0c04097
|
14 |
Y F Zhang , N B Zhang , H Hingorani , N Y Ding , D Wang , C Yuan , B Zhang , G Y Gu , Q Ge . Fast-response, stiffness-tunable soft actuator by hybrid multimaterial 3D printing. Advanced Functional Materials, 2019, 29(15): 1806698
https://doi.org/10.1002/adfm.201806698
|
15 |
L L Xu , F H Xue , H W Zheng , Q X Ji , C W Qiu , Z Chen , X Zhao , P Y Li , Y Hu , Q Y Peng , X D He . An insect larvae inspired MXene-based jumping actuator with controllable motion powered by light. Nano Energy, 2022, 103: 107848
https://doi.org/10.1016/j.nanoen.2022.107848
|
16 |
L F Chang , D P Wang , Z S Huang , C F Wang , J Torop , B Li , Y J Wang , Y Hu , A Aabloo . A versatile ionomer-based soft actuator with multi-stimulus responses, self-sustainable locomotion, and photoelectric Conversion. Advanced Functional Materials, 2023, 33(6): 2212341
https://doi.org/10.1002/adfm.202212341
|
17 |
C C Zhang , H Zhang , R F Chen , L H Zhao , H Wu , C W Wang , Y Hu . A bioinspired programmable soft bilayer actuator based on aluminum exoskeleton. Advanced Materials Technologies, 2022, 7(9): 2200036
https://doi.org/10.1002/admt.202200036
|
18 |
H Wei , K Li , W G Liu , H Meng , P X Zhang , C Y Yan . 3D printing of free-standing stretchable electrodes with tunable structure and stretchability. Advanced Engineering Materials, 2017, 19(11): 1700341
https://doi.org/10.1002/adem.201700341
|
19 |
N Xia , D D Jin , V Iacovacci , L Zhang . 3D printing of functional polymers for miniature machines. Multifunctional Materials, 2022, 5(1): 012001
https://doi.org/10.1088/2399-7532/ac4836
|
20 |
D F Tang , C Q Zhang , H N Sun , H Z Dai , J Xie , J Z Fu , P Zhao . Origami-inspired magnetic-driven soft actuators with programmable designs and multiple applications. Nano Energy, 2021, 89: 106424
https://doi.org/10.1016/j.nanoen.2021.106424
|
21 |
J C Zhang , Z Y Ren , W Q Hu , R H Soon , I C Yasa , Z M Liu , M Sitti . Voxelated three-dimensional miniature magnetic soft machines via multimaterial heterogeneous assembly. Science Robotics, 2021, 6(53): eabf0112
https://doi.org/10.1126/scirobotics.abf0112
|
22 |
Z Y Ji , C Y Yan , B Yu , X L Wang , F Zhou . Multimaterials 3D printing for free assembly manufacturing of magnetic driving soft actuator. Advanced Materials Interfaces, 2017, 4(22): 1700629
https://doi.org/10.1002/admi.201700629
|
23 |
Y Kim , H Yuk , R K Zhao , S A Chester , X H Zhao . Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature, 2018, 558(7709): 274–279
https://doi.org/10.1038/s41586-018-0185-0
|
24 |
S Qi , H Y Guo , J Fu , Y P Xie , M Zhu , M Yu . 3D printed shape-programmable magneto-active soft matter for biomimetic applications. Composites Science and Technology, 2020, 188: 107973
https://doi.org/10.1016/j.compscitech.2019.107973
|
25 |
T Q Xu , J C Zhang , M Salehizadeh , O Onaizah , E Diller . Millimeter-scale flexible robots with programmable three-dimensional magnetization and motions. Science Robotics, 2019, 4(29): eaav4494
https://doi.org/10.1126/scirobotics.aav4494
|
26 |
H N Sun , C Q Zhang , C F Pan , Z Z Hu , Y J Huang , D F Tang , J Xie , H Z Dai , H Hu , T F Li , P Zhao . Magnetic field-assisted manufacturing of groove-structured flexible actuators with enhanced performance. Additive Manufacturing, 2024, 80: 103979
https://doi.org/10.1016/j.addma.2024.103979
|
27 |
A J Cresswell-Boyes , A H Barber , D Mills , A Tatla , G R Davis . Approaches to 3D printing teeth from X-ray microtomography. Journal of Microscopy, 2018, 272(3): 207–212
https://doi.org/10.1111/jmi.12725
|
28 |
O A Hamid , H M Eltaher , V Sottile , J Yang . 3D bioprinting of a stem cell-laden, multi-material tubular composite: an approach for spinal cord repair. Materials Science and Engineering: C, 2021, 120: 111707
https://doi.org/10.1016/j.msec.2020.111707
|
29 |
F Li , N P Macdonald , R M Guijt , M C Breadmore . Multimaterial 3D printed fluidic device for measuring pharmaceuticals in biological fluids. Analytical Chemistry, 2019, 91(3): 1758–1763
https://doi.org/10.1021/acs.analchem.8b03772
|
30 |
Y F Lu , S N Mantha , D C Crowder , S Chinchilla , K N Shah , Y H Yun , R B Wicker , J W Choi . Microstereolithography and characterization of poly (propylene fumarate)-based drug-loaded microneedle arrays. Biofabrication, 2015, 7(4): 045001
https://doi.org/10.1088/1758-5090/7/4/045001
|
31 |
A K Miri , D Nieto , L Iglesias , H Goodarzi Hosseinabadi , S Maharjan , G U Ruiz-Esparza , P Khoshakhlagh , A Manbachi , M R Dokmeci , S C Chen , S R Shin , Y S Zhang , A Khademhosseini . Microfluidics-enabled multimaterial maskless stereolithographic bioprinting. Advanced Materials, 2018, 30(27): 1800242
https://doi.org/10.1002/adma.201800242
|
32 |
D J Roach , C M Hamel , C K Dunn , M V Johnson , X Kuang , H J Qi . The m4 3D printer: a multi-material multi-method additive manufacturing platform for future 3D printed structures. Additive Manufacturing, 2019, 29: 100819
https://doi.org/10.1016/j.addma.2019.100819
|
33 |
Q J Ze , X Kuang , S Wu , J Wong , S M Montgomery , R D Zhang , J M Kovitz , F Y Yang , H J Qi , R K Zhao . Magnetic shape memory polymers with integrated multifunctional shape manipulation. Advanced Materials, 2020, 32(4): 1906657
https://doi.org/10.1002/adma.201906657
|
34 |
B Zhang , S Y Li , H Hingorani , A Serjouei , L Larush , A A Pawar , W H Goh , A H Sakhaei , M Hashimoto , K Kowsari , S Magdassi , Q Ge . Highly stretchable hydrogels for UV curing based high-resolution multimaterial 3D printing. Journal of Materials Chemistry B, 2018, 6(20): 3246–3253
https://doi.org/10.1039/C8TB00673C
|
35 |
Y Zhang, H Chen, S Qiu, Y Zhang, X Zhu. Multi-material integrated printing of reprogrammable magnetically actuated soft structure. In: International Conference on Intelligent Robotics and Applications. Singapore: Springer, 2023, 63–70
|
36 |
Z Z Hu , C Q Zhang , H N Sun , X J Ma , P Zhao . Length manipulation of hard magnetic particle chains under rotating magnetic fields. Sensors and Actuators A: Physical, 2023, 361: 114562
https://doi.org/10.1016/j.sna.2023.114562
|
37 |
Z Z Hu , C Q Zhang , H N Sun , H Z Dai , D F Tang , H Hu , T F Li , J Z Fu , P Zhao . A microstructure enhancement method for hard magnetic particle chains based on magnetic field oscillation sieve. Materials & Design, 2024, 237: 112588
https://doi.org/10.1016/j.matdes.2023.112588
|
38 |
L R Lopes , A F Silva , O S Carneiro . Multi-material 3D printing: the relevance of materials affinity on the boundary interface performance. Additive Manufacturing, 2018, 23: 45–52
https://doi.org/10.1016/j.addma.2018.06.027
|
[1] |
FME-24008-OF-HY_suppl_1
|
Video
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|