Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2009, Vol. 4 Issue (4) : 407-414    https://doi.org/10.1007/s11465-009-0049-2
Research articles
Efficiency characteristics of piezostack pump for linear actuators
Junwu KAN1,Kehong TANG1,Chenghui SHAO1,Guoren ZHU1,Taijiang PENG2,
1.College of Mechanical Science and Engineering, Jilin University, Changchun 130025, China; 2.College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China;
 Download: PDF(199 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A piezostack pump for linear actuators is presented and studied in terms of mechanical energy efficiency (MEE), energy conversion efficiency (ECE) and design method. MEE is defined as the ratio of the output mechanical energy to that converted from input electrical energy, and ECE is the ratio of output mechanical energy to input electrical energy. The analysis results show that both MEE and ECE decrease with the increase of stiffness of the chamber diaphragm (ks), which is a function of the radius ratio (rigid disk radius to chamber radius). There is respective optimal external load (Fc) for them to achieve peak value for a given piezostack with blocked force (Fb) and stiffness (ka). The optimal force ratio (Fc/Fb) is a constant of 0.5 for maximum MEE, and between 0.57 and 0.5 for maximum ECE. Considering the deflection of the pump chamber and dynamic response of the piezostack, the stiffness ratio (ks/ka) should be limited between 0.3 and 1, and the relative radius ratio is between 0.7 and 0.8. With the increase of the radius ratio in the range, the maximal MEE decreases from 0.38 to 0.25, and the peak ECE decreases from 0.20 to 0.14.
Keywords piezostack actuator      piezostack pump      mechanical efficiency      energy conversion efficiency (ECE)      
Issue Date: 05 December 2009
 Cite this article:   
Junwu KAN,Chenghui SHAO,Taijiang PENG, et al. Efficiency characteristics of piezostack pump for linear actuators[J]. Front. Mech. Eng., 2009, 4(4): 407-414.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-009-0049-2
https://academic.hep.com.cn/fme/EN/Y2009/V4/I4/407
Laser D J, Santiago J G. A review of pumps. J Micromech Microen, 2004, 14: R35―R64
Woias P. Pumps—past,progress and future prospects. Sens ActuatorsB, 2005, 105: 28―38

doi: 10.1016/S0925-4005(04)00108-X
Mauck L D, Oates W S, Lynch Dr C. Piezoelectric hydraulic pump performance. Proceedings of SPIE, 2001, 4332: 246―253

doi: 10.1117/12.429662
Oates W S, Mauck L D, Lynch C S. System dynamic modeling of a piezoelectric hydraulicpump. Proceedings of SPIE, 2002, 4693: 598―606

doi: 10.1117/12.475210
Zhang J, Li Y, Liu J. Simulation and experiment of valveless piezoelectricpump with Y-shape tubes. Opt PrecisionEng, 2008, 16(4): 669–675
Spencer W J, Corbett W T, Dominguez L R. An electronically controlled piezoelectric insulin pumpand valves. IEEE Trans Sonics Ultrasonbics, 1978, SU―25(3): 153―156
Ullmann A. Thepiezoelectric valve-less pump-performance enhancement analysis. Sens Actuators A, 1998, 69: 97―105

doi: 10.1016/S0924-4247(98)00058-2
Kim J H, Kang C J, Kim Y S. A disposable polydimethylsiloxane-based diffuser micropumpactuated by piezoelectric-disc. MicroelectronicEngineering, 2004, 71: 119―124

doi: 10.1016/j.mee.2003.10.005
Kan J, Yang Z, Peng T. Design and test of a high-performance piezoelectric micropumpfor drug delivery. Sens Actuators A, 2005, 121: 156―161

doi: 10.1016/j.sna.2004.12.002
Feng G H, Kim E S. Micropump based on PZT unimorphand one-way parylene valves. J MicromechMicroeng, 2004, 14: 429―435

doi: 10.1088/0960-1317/14/4/001
Goldschmidtböing F, Doll A, Heinrichs M. A generic analytical model for microdiaphragm pumps withactive valves. Micromech Microeng, 2005, 15: 673―683

doi: 10.1088/0960-1317/15/4/001
Jang L S, Li Y J, Lin S J. A stand-alone peristaltic micropump based on piezoelectricactuation. Biomedical Microdevices, 2007, 9: 185―194

doi: 10.1007/s10544-006-9020-8
Mu Y H, Hung N P, Ngoi K A. Optimisation design of a piezoelectric micropump. Int J Adv Manuf Technol, 1999, 155: 573―576

doi: 10.1007/s001700050104
Morris C J, Forster F K. Optimization of a circularpiezoelectric bimorph for a micropump driver. J Micromech Microeng, 2000, 10: 459―465

doi: 10.1088/0960-1317/10/3/323
Li S, Chen S. Analytical analysis of acircular PZT actuator for valveless pumps. Sens Actuators A, 2003, 104: 151―161

doi: 10.1016/S0924-4247(03)00006-2
Kan J, Peng T, Tang K. The structure and performance of double-chamber pumps. Piezoelectrics and Acoustooptics, 2006, 28(1): 40―42
Kan J, Tang K, Liu G. Development of serial-connection piezoelectric pumps. Sens Actuators A, 2008, 144: 321―327

doi: 10.1016/j.sna.2008.01.016
Heverly II D E, Wang K W, Smith E C. Dual-stack piezoelectric device with bidirectional actuationand improved performance. Journal of IntelligentMaterial Systems and Structures, 2004, 155: 565―574

doi: 10.1177/1045389X04044450
Nasser K, Leo D J. Efficiency of frequency-rectifiedpiezohydraulic and piezopneumatic actuation. Journal of Intelligent Material Systems and Structures, 2000, 11: 798―810
[1] WANG Guangming, SHEN Lincheng, WU Yonghui. Research on swimming by undulatory long dorsal fin propulsion[J]. Front. Mech. Eng., 2007, 2(1): 77-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed