Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2023, Vol. 18 Issue (1) : 1    https://doi.org/10.1007/s11465-022-0717-z
RESEARCH ARTICLE
Machinability of ultrasonic vibration-assisted micro-grinding in biological bone using nanolubricant
Yuying YANG1, Min YANG2, Changhe LI1(), Runze LI3, Zafar SAID4, Hafiz Muhammad ALI5, Shubham SHARMA6()
1. School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China
2. College of Physics, Qingdao University, Qingdao 266071, China
3. Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
4. Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
5. Mechanical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
6. Department of Mechanical Engineering, IK Gujral Punjab Technical University, Jalandhar 144603, India
 Download: PDF(6347 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Bone grinding is an essential and vital procedure in most surgical operations. Currently, the insufficient cooling capacity of dry grinding, poor visibility of drip irrigation surgery area, and large grinding force leading to high grinding temperature are the technical bottlenecks of micro-grinding. A new micro-grinding process called ultrasonic vibration-assisted nanoparticle jet mist cooling (U-NJMC) is innovatively proposed to solve the technical problem. It combines the advantages of ultrasonic vibration (UV) and nanoparticle jet mist cooling (NJMC). Notwithstanding, the combined effect of multi parameter collaborative of U-NJMC on cooling has not been investigated. The grinding force, friction coefficient, specific grinding energy, and grinding temperature under dry, drip irrigation, UV, minimum quantity lubrication (MQL), NJMC, and U-NJMC micro-grinding were compared and analyzed. Results showed that the minimum normal grinding force and tangential grinding force of U-NJMC micro-grinding were 1.39 and 0.32 N, which were 75.1% and 82.9% less than those in dry grinding, respectively. The minimum friction coefficient and specific grinding energy were achieved using U-NJMC. Compared with dry, drip, UV, MQL, and NJMC grinding, the friction coefficient of U-NJMC was decreased by 31.3%, 17.0%, 19.0%, 9.8%, and 12.5%, respectively, and the specific grinding energy was decreased by 83.0%, 72.7%, 77.8%, 52.3%, and 64.7%, respectively. Compared with UV or NJMC alone, the grinding temperature of U-NJMC was decreased by 33.5% and 10.0%, respectively. These results showed that U-NJMC provides a novel approach for clinical surgical micro-grinding of biological bone.

Keywords micro-grinding      biological bone      ultrasonic vibration (UV)      nanoparticle jet mist cooling (NJMC)      grinding force      grinding temperature     
Corresponding Author(s): Changhe LI,Shubham SHARMA   
About author:

Changjian Wang and Zhiying Yang contributed equally to this work.

Just Accepted Date: 30 June 2022   Issue Date: 23 February 2023
 Cite this article:   
Yuying YANG,Min YANG,Changhe LI, et al. Machinability of ultrasonic vibration-assisted micro-grinding in biological bone using nanolubricant[J]. Front. Mech. Eng., 2023, 18(1): 1.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-022-0717-z
https://academic.hep.com.cn/fme/EN/Y2023/V18/I1/1
Fig.1  Schematic of the functionalization and bio-coupling of silica nanoparticles.
Fig.2  Diagram of the bone micro-grinding experiment.
Fig.3  Schematic of grinding measurement: (a) grinding force and (b) grinding temperature.
Fig.4  Schematic of sample orientations and structure in compact bone.
No.Lubrication conditionsLubrication parameters
1Dry?
2DripLiquid flow rate Q = 50 mL/h
3UVAxial vibration amplitude A = 7.5 μm, frequency f = 20 kHz
4MQLQ = 10 mL/h, air pressure P = 0.5 MPa, nozzle angle α = 45°, injection distance D = 15 mm
5NJMCQ = 10 mL/h, P = 0.5 MPa, α = 45°, D = 15 mm, nanofluid: 1.2 g SiO2 + 2 mL PEG400 + 1000 mL saline
6U-NJMCA = 7.5 μm, f = 20 kHz, Q = 10 mL/h, P = 0.5 MPa, α = 45°, D = 15 mm, nanofluid: 1.2 g SiO2 + 2 mL PEG400 + 1000 mL saline
Tab.1  Lubrication parameters under different lubrication conditions
No.Grinding process parametersNumerical value
1Grinding toolsMicro-grinding
2Spindle speed n21000 r/min
3Feeding speed vw120 mm/min
4Grinding depth ap0.015 mm
Tab.2  Experimental scheme of micro-grinding process
Fig.5  Comparison of grinding force on different bone tissue orientations.
Fig.6  Schematic of bone tissue grinding in different directions. (a) Cross grinding direction, (b) side grinding direction, and (c) surface grinding direction.
Fig.7  Typical diagram of grinding force in different grinding conditions: (a) dry, (b) drip, (c) minimum quantity lubrication, (d) ultrasonic vibration, (e) nanoparticle jet mist cooling, and (f) ultrasonic vibration-assisted nanoparticle jet mist cooling.
Fig.8  Grinding force of different grinding conditions. MQL: minimum quantity lubrication, UV: ultrasonic vibration, NJMC: nanoparticle jet mist cooling, U-NJMC: ultrasonic vibration-assisted nanoparticle jet mist cooling.
Fig.9  Friction coefficient in different grinding conditions. MQL: minimum quantity lubrication, UV: ultrasonic vibration, NJMC: nanoparticle jet mist cooling, U-NJMC: ultrasonic vibration-assisted nanoparticle jet mist cooling.
Fig.10  Schematic of the bone grinding width.
Fig.11  Specific grinding performance under different lubrication conditions.
Working conditionsFn/NFt/Nμes/(J?mm?3)T/°C
Dry5.591.870.3352.47 × 10443.6
Drip4.231.170.2771.54 × 10429.8
UV2.620.200.2840.88 × 10439.4
MQL5.041.430.2551.89 × 10437.9
NJMC3.410.230.2631.19 × 10429.1
U-NJMC1.390.320.2300.42 × 10426.2
Tab.3  Summary of micro-grinding biological bone at different lubrication conditions with the corresponding experimental results
Fig.12  Grinding temperature under different lubrication conditions.
Fig.13  Schematic of UV-assisted micro-grinding.
Fig.14  Nano-SiO2: (a) macroscopic morphology, (b) molecular structure, and (c) 3D chain structure.
Fig.15  Lubrication mechanism of SiO2 nanoparticles: (a) micro-bearing action, (b) deposition membrane effect, (c) penetration and frictional chemical reactions, and (d) self-repair mechanism.
Abbreviations
2DTwo-dimensional
CNTCarbon nanotube
MQLMinimum quantity lubrication
NJMCNanoparticle jet mist cooling
PEG400Polyethylene glycol 400
U-NJMCUltrasonic vibration-assisted nanoparticle jet mist cooling
UVUltrasonic vibration
Variables
agThickness of the undeformed chip
apGrinding depth
AAxial vibration amplitude
bwMicro-grinding workpiece width
CEffective number of abrasive grains per unit area
DInjection distance
esSpecific grinding energy
fFrequency
FaAxial grinding force
FnNormal grinding force
FtTangential grinding force
l1Contact arc length between the grinding rod and the workpiece material in normal grinding
l2Contact arc length between the grinding rod and the workpiece material in UV-assisted micro-grinding
nSpindle speed
PAir pressure
QLiquid flow rate
rRadius of the abrasive
TGrinding temperature
vsGrinding tool linear speed
vwFeeding speed
αNozzle angle
μCoefficient of friction
μdry, μdrip, μMQL, μNJMC, μUV, and μU-NJMCFriction coefficients of dry, drip, MQL, NJMC, UV, and U-NJMC grinding, respectively
θAverage cone half angle of the abrasive grains
φInitial phase of ultrasonic vibration
  
1 Z R Liao , D A Axinte , D Gao . A novel cutting tool design to avoid surface damage in bone machining. International Journal of Machine Tools and Manufacture, 2017, 116: 52–59
https://doi.org/10.1016/j.ijmachtools.2017.01.003
2 J A Robles-Linares , D Axinte , Z R Liao , A Gameros . Machining-induced thermal damage in cortical bone: necrosis and micro-mechanical integrity. Materials & Design, 2021, 197: 109215
https://doi.org/10.1016/j.matdes.2020.109215
3 M Yang , C H Li , Y B Zhang , D Z Jia , X P Zhang , R Z Li . A new model for predicting neurosurgery skull bone grinding temperature field. Journal of Mechanical Engineering, 2018, 54(23): 215–222
https://doi.org/10.3901/JME.2018.23.215
4 M Conward , J Samuel . Machining characteristics of the haversian and plexiform components of bovine cortical bone. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 60: 525–534
https://doi.org/10.1016/j.jmbbm.2016.03.017
5 Z R Liao , D Axinte , D Gao . On modelling of cutting force and temperature in bone milling. Journal of Materials Processing Technology, 2019, 266: 627–638
https://doi.org/10.1016/j.jmatprotec.2018.11.039
6 W Li , Q D Chen , Y H Ren , Y Jiao , A M M Ibrahim . Hybrid micro-grinding process for manufacturing meso/micro-structures on monocrystalline silicon. Materials and Manufacturing Processes, 2021, 36(1): 17–26
https://doi.org/10.1080/10426914.2020.1813890
7 M Yang , C H Li , L Luo , R Z Li , Y Z Long . Predictive model of convective heat transfer coefficient in bone micro-grinding using nanofluid aerosol cooling. International Communications in Heat and Mass Transfer, 2021, 125: 105317
https://doi.org/10.1016/j.icheatmasstransfer.2021.105317
8 S Gao , H Huang . Recent advances in micro- and nano-machining technologies. Frontiers of Mechanical Engineering, 2017, 12(1): 18–32
https://doi.org/10.1007/s11465-017-0410-9
9 Y Zhang , J A Robles-Linares , L Chen , Z R Liao , A J Shih , C Y Wang . Advances in machining of hard tissues—from material removal mechanism to tooling solutions. International Journal of Machine Tools and Manufacture, 2022, 172: 103838
https://doi.org/10.1016/j.ijmachtools.2021.103838
10 J J Chen , D D Yuan , H F Jiang , L Y Zhang , Y Yang , Y C Fu , N Qian , F Jiang . Thermal management of bone drilling based on rotating heat pipe. Energies, 2022, 15(1): 35
https://doi.org/10.3390/en15010035
11 M Yang , C H Li , Z Said , Y B Zhang , R Z Li , S Debnath , H M Ali , T Gao , Y Z Long . Semiempirical heat flux model of hard-brittle bone material in ductile microgrinding. Journal of Manufacturing Processes, 2021, 71: 501–514
https://doi.org/10.1016/j.jmapro.2021.09.053
12 T Mizutani , U Satake , T Enomoto . A study on a cooling method for bone grinding using diamond bur for minimally invasive surgeries. Precision Engineering, 2021, 70: 155–163
https://doi.org/10.1016/j.precisioneng.2021.01.010
13 L M Shu , S H Li , M Terashima , W Bai , T Hanami , R Hasegawa , N Sugita . A novel self-centring drill bit design for low-trauma bone drilling. International Journal of Machine Tools and Manufacture, 2020, 154: 103568
https://doi.org/10.1016/j.ijmachtools.2020.103568
14 S Gholampour , J Droessler , D Frim . The role of operating variables in improving the performance of skull base grinding. Neurosurgical Review, 2022, 45(3): 2431–2440
https://doi.org/10.1007/s10143-022-01736-0
15 D Axinte , Y B Guo , Z R Liao , A J Shih , R M’Saoubi , N Sugita . Machining of biocompatible materials—recent advances. CIRP Annals, 2019, 68(2): 629–652
https://doi.org/10.1016/j.cirp.2019.05.003
16 S H Li , L M Shu , T Kizaki , W Bai , M Terashima , N Sugita . Cortical bone drilling: a time series experimental analysis of thermal characteristics. Journal of Manufacturing Processes, 2021, 64: 606–619
https://doi.org/10.1016/j.jmapro.2021.01.046
17 S Kondo , Y Okada , H Iseki , T Hori , K Takakura , A Kobayashi , H Nagata . Thermological study of drilling bone tissue with a high-speed drill. Neurosurgery, 2000, 46(5): 1162–1168
https://doi.org/10.1097/00006123-200005000-00029
18 Y Kitahama , H Shizuka , R Kimura , T Suzuki , Y Ohara , H Miyake , K Sakai . Fluid lubrication and cooling effects in diamond grinding of human iliac bone. Medicina, 2021, 57(1): 71–80
https://doi.org/10.3390/medicina57010071
19 D Y Kong , G M Lin , Y B Shi , Z L Gu , Y Gao , Y H Feng . Performance of heterotopic bone elicited with bone morphogenic protein-2 microspheres as a bone repair material. Materials & Design, 2020, 191: 108657
https://doi.org/10.1016/j.matdes.2020.108657
20 E Novitskaya , P Y Chen , S Lee , A Castro-Ceseña , G Hirata , V A Lubarda , J McKittrick . Anisotropy in the compressive mechanical properties of bovine cortical bone and the mineral and protein constituents. Acta Biomaterialia, 2011, 7(8): 3170–3177
https://doi.org/10.1016/j.actbio.2011.04.025
21 X P Zhang , C H Li , Y B Zhang , Y G Wang , B K Li , M Yang , S M Guo , G T Liu , N Q Zhang . Lubricating property of MQL grinding of Al2O3/SiC mixed nanofluid with different particle sizes and microtopography analysis by cross-correlation. Precision Engineering, 2017, 47: 532–545
https://doi.org/10.1016/j.precisioneng.2016.09.016
22 C H Li , J Y Li , S Wang , Q Zhang . Modeling and numerical simulation of the grinding temperature field with nanoparticle jet of MQL. Advances in Mechanical Engineering, 2013, 5: 986984
https://doi.org/10.1155/2013/986984
23 D Z Jia , N Q Zhang , B Liu , Z M Zhou , X P Wang , Y B Zhang , C Mao , C H Li . Particle size distribution characteristics of electrostatic minimum quantity lubrication and grinding surface quality evaluation. Diamond & Abrasives Engineering, 2021, 41(3): 89–95
https://doi.org/10.13394/j.cnki.jgszz.2021.3.0013
24 X Cui, C H Li, W F Ding, Y Chen, C Mao, X F Xu, B Liu, D Z Wang, H N Li, Y B Zhang, Z Said, S Debnath, M Jamil, H M Ali, S Sharma. Minimum quantity lubrication machining of aeronautical materials using carbon group nanolubricant: from mechanisms to application. Chinese Journal of Aeronautics, 2022, 35(11): 85–112
https://doi.org/10.1016/j.cja.2021.08.011
25 S S Qu , Y D Gong , Y Y Yang , Y Sun , X L Wen , Y Qi . Investigating minimum quantity lubrication in unidirectional Cf/SiC composite grinding. Ceramics International, 2020, 46(3): 3582–3591
https://doi.org/10.1016/j.ceramint.2019.10.076
26 X M Wang , C H Li , Y B Zhang , Z Said , S Debnath , S Sharma , M Yang , T Gao . Influence of texture shape and arrangement on nanofluid minimum quantity lubrication turning. The International Journal of Advanced Manufacturing Technology, 2022, 119(1): 631–646
https://doi.org/10.1007/s00170-021-08235-4
27 T Gao , Y B Zhang , C H Li , Y Q Wang , Y Chen , Q L An , S Zhang , H N Li , H J Cao , H M Ali , Z M Zhou , S Sharma . Fiber-reinforced composites in milling and grinding: machining bottlenecks and advanced strategies. Frontiers of Mechanical Engineering, 2022, 17(2): 24
https://doi.org/10.1007/s11465-022-0680-8
28 Y B Zhang , H N Li , C H Li , C Z Huang , H M Ali , X F Xu , C Mao , W F Ding , X Cui , M Yang , T B Yu , M Jamil , M K Gupta , D Z Jia , Z Said . Nano-enhanced biolubricant in sustainable manufacturing: from processability to mechanisms. Friction, 2022, 10: 803–841
https://doi.org/10.1007/s40544-021-0536-y
29 M Z Liu , C H Li , Y B Zhang , Q L An , M Yang , T Gao , C Mao , B Liu , H J Cao , X F Xu , Z Said , S Debnath , M Jamil , H M Ali , S Sharma . Cryogenic minimum quantity lubrication machining: from mechanism to application. Frontiers of Mechanical Engineering, 2021, 16(4): 649–697
https://doi.org/10.1007/s11465-021-0654-2
30 S S Qu , P Yao , Y D Gong , D K Chu , Y Y Yang , C W Li , Z L Wang , X P Zhang , Y Hou . Environmentally friendly grinding of C/SiCs using carbon nanofluid minimum quantity lubrication technology. Journal of Cleaner Production, 2022, 366: 132898
31 Y B Zhang , C H Li , D Z Jia , B K Li , Y G Wang , M Yang , Y L Hou , X W Zhang . Experimental study on the effect of nanoparticle concentration on the lubricating property of nanofluids for MQL grinding of Ni-based alloy. Journal of Materials Processing Technology, 2016, 232: 100–115
https://doi.org/10.1016/j.jmatprotec.2016.01.031
32 M Yang , C H Li , Y B Zhang , D Z Jia , X P Zhang , Y L Hou , R Z Li , J Wang . Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions. International Journal of Machine Tools and Manufacture, 2017, 122: 55–65
https://doi.org/10.1016/j.ijmachtools.2017.06.003
33 Z T Lin , Y B Wu , Y G Bi . Rapid synthesis of SiO2 by ultrasonic-assisted Stober method as controlled and pH-sensitive drug delivery. Journal of Nanoparticle Research, 2018, 20(11): 304
https://doi.org/10.1007/s11051-018-4411-3
34 V Biju . Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chemical Society Reviews, 2014, 43(3): 744–764
https://doi.org/10.1039/C3CS60273G
35 J L Yuan , B H Lyu , W Hang , Q F Deng . Review on the progress of ultra-precision machining technologies. Frontiers of Mechanical Engineering, 2017, 12(2): 158–180
https://doi.org/10.1007/s11465-017-0455-9
36 Y Cao , J F Yin , W F Ding , J H Xu . Alumina abrasive wheel wear in ultrasonic vibration-assisted creep-feed grinding of Inconel 718 nickel-based superalloy. Journal of Materials Processing Technology, 2021, 297: 117241
https://doi.org/10.1016/j.jmatprotec.2021.117241
37 Q Miao , W F Ding , J H Xu , L J Cao , H C Wang , Z Yin , C W Dai , W J Kuang . Creep feed grinding induced gradient microstructures in the superficial layer of turbine blade root of single crystal nickel-based superalloy. International Journal of Extreme Manufacturing, 2021, 3(4): 045102
https://doi.org/10.1088/2631-7990/ac1e05
38 G Q Yin , J H Wang , Y Y Guan , D Wang , Y Sun . The prediction model and experimental research of grinding surface roughness based on AE signal. The International Journal of Advanced Manufacturing Technology, 2022, 120(9): 6693–6705
https://doi.org/10.1007/s00170-022-09135-x
39 Y Cao , Y J Zhu , W F Ding , Y T Qiu , L F Wang , J H Xu . Vibration coupling effects and machining behavior of ultrasonic vibration plate device for creep-feed grinding of Inconel 718 nickel-based superalloy. Chinese Journal of Aeronautics, 2022, 35(2): 332–345
https://doi.org/10.1016/j.cja.2020.12.039
40 W J Kuang, Q Miao, W F Ding, Y J Zhao, B Zhao, X B Wen, S P Li. Fretting wear behaviour of machined layer of nickel-based superalloy produced by creep-feed profile grinding. Chinese Journal of Aeronautics, 2022, 35(10): 401–411
https://doi.org/10.1016/j.cja.2021.10.007
41 K Alam , M Ghodsi , A Al-Shabibi , V Silberschmidt . Experimental study on the effect of point angle on force and temperature in ultrasonically assisted bone drilling. Journal of Medical and Biological Engineering, 2018, 38(2): 236–243
https://doi.org/10.1007/s40846-017-0291-8
42 V Gupta , P M Pandey . An in-vitro study of cutting force and torque during rotary ultrasonic bone drilling. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2018, 232(9): 1549–1560
https://doi.org/10.1177/0954405416673115
43 A Babbar , V Jain , D Gupta . Thermogenesis mitigation using ultrasonic actuation during bone grinding: a hybrid approach using CEM43°C and Arrhenius model. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41(10): 401
https://doi.org/10.1007/s40430-019-1913-6
44 K M Li , Y M Hu , Z Y Yang , M Y Chen . Experimental study on vibration-assisted grinding. Journal of Manufacturing Science and Engineering, 2012, 134(4): 041009
https://doi.org/10.1115/1.4007102
45 D Z Jia , C H Li , Y B Zhang , M Yang , X P Zhang , R Z Li , H J Ji . Experimental evaluation of surface topographies of NMQL grinding ZrO2 ceramics combining multiangle ultrasonic vibration. The International Journal of Advanced Manufacturing Technology, 2019, 100(1): 457–473
https://doi.org/10.1007/s00170-018-2718-y
46 F Rabiei , A R Rahimi , M J Hadad , A Saberi . Experimental evaluation of coolant-lubricant properties of nanofluids in ultrasonic assistant MQL grinding. The International Journal of Advanced Manufacturing Technology, 2017, 93(9): 3935–3953
https://doi.org/10.1007/s00170-017-0774-3
47 L T Yan , Q J Zhang , J Z Yu . Effects of continuous minimum quantity lubrication with ultrasonic vibration in turning of titanium alloy. The International Journal of Advanced Manufacturing Technology, 2018, 98(1): 827–837
https://doi.org/10.1007/s00170-018-2323-0
48 T Gao , Y B Zhang , C H Li , Y Q Wang , Q L An , B Liu , Z Said , S Sharma . Grindability of carbon fiber reinforced polymer using CNT biological lubricant. Scientific Reports, 2021, 11(1): 22535
https://doi.org/10.1038/s41598-021-02071-y
49 J L Jiang , P Q Ge , S F Sun , D X Wang , Y L Wang , Y Yang . From the microscopic interaction mechanism to the grinding temperature field: an integrated modelling on the grinding process. International Journal of Machine Tools and Manufacture, 2016, 110: 27–42
https://doi.org/10.1016/j.ijmachtools.2016.08.004
50 N Sugita , K Ishii , J B Sui , M Terashima . Multi-grooved cutting tool to reduce cutting force and temperature during bone machining. CIRP Annals, 2014, 63(1): 101–104
https://doi.org/10.1016/j.cirp.2014.03.069
51 A Babbar , V Jain , D Gupta , D Agrawal , C Prakash , S Singh , L Y L Wu , H Y Zheng , G Królczyk , M Bogdan-Chudy . Experimental analysis of wear and multi-shape burr loading during neurosurgical bone grinding. Journal of Materials Research and Technology, 2021, 12: 15–28
https://doi.org/10.1016/j.jmrt.2021.02.060
52 M Yang , C H Li , Y B Zhang , Y G Wang , B K Li , D Z Jia , Y L Hou , R Z Li . Research on microscale skull grinding temperature field under different cooling conditions. Applied Thermal Engineering, 2017, 126: 525–537
https://doi.org/10.1016/j.applthermaleng.2017.07.183
53 J H Zhang , Y Zhao , S Zhang , F Q Tian , L S Guo , R Z Dai . Study on effect of ultrasonic vibration on grinding force and surface quality in ultrasonic assisted micro end grinding of silica glass. Shock and Vibration, 2014, 2014: 418059
https://doi.org/10.1155/2014/418059
54 S S Qu , P Yao , Y D Gong , Y Y Yang , D K Chu , Q S Zhu . Modelling and grinding characteristics of unidirectional C-SiCs. Ceramics International, 2022, 48(6): 8314–8324
https://doi.org/10.1016/j.ceramint.2021.12.036
55 Y Sun , L Y Jin , Y D Gong , X L Wen , G Q Yin , Q Wen , B J Tang . Experimental evaluation of surface generation and force time-varying characteristics of curvilinear grooved micro end mills fabricated by EDM. Journal of Manufacturing Processes, 2022, 73: 799–814
https://doi.org/10.1016/j.jmapro.2021.11.049
56 Z R Liao , D A Axinte . On chip formation mechanism in orthogonal cutting of bone. International Journal of Machine Tools and Manufacture, 2016, 102: 41–55
https://doi.org/10.1016/j.ijmachtools.2015.12.004
57 D Z Jia , C H Li , Y B Zhang , M Yang , H J Cao , B Liu , Z M Zhou . Grinding performance and surface morphology evaluation of titanium alloy using electric traction bio micro lubricant. Journal of Mechanical Engineering, 2022, 58(5): 198–211
https://doi.org/10.3901/JME.2022.05.198
58 W F Ding , J H Xu , Z Z Chen , H H Su , Y C Fu . Grindability and surface integrity of cast nickel-based superalloy in creep feed grinding with brazed CBN abrasive wheels. Chinese Journal of Aeronautics, 2010, 23(4): 501–510
https://doi.org/10.1016/S1000-9361(09)60247-8
59 L M Shu , N Sugita . Analysis of fracture, force, and temperature in orthogonal elliptical vibration-assisted bone cutting. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 103: 103599
https://doi.org/10.1016/j.jmbbm.2019.103599
60 D E Brehl , T A Dow . Review of vibration-assisted machining. Precision Engineering, 2008, 32(3): 153–172
https://doi.org/10.1016/j.precisioneng.2007.08.003
61 P Gu , C M Zhu , Z Tao , Y Q Yu . A grinding force prediction model for SiCp/Al composite based on single-abrasive-grain grinding. The International Journal of Advanced Manufacturing Technology, 2020, 109: 1563–1581
62 M Zhou , W Zheng . A model for grinding forces prediction in ultrasonic vibration assisted grinding of SiCp/Al composites. The International Journal of Advanced Manufacturing Technology, 2016, 87(9): 3211–3224
https://doi.org/10.1007/s00170-016-8726-x
63 S D McCarus . Physiologic mechanism of the ultrasonically activated scalpel. Journal of the American Association of Gynecologic Laparoscopists, 1996, 3(4): 601–608
https://doi.org/10.1016/S1074-3804(05)80174-4
64 Y Wang , B Lin , S L Wang , X Y Cao . Study on the system matching of ultrasonic vibration assisted grinding for hard and brittle materials processing. International Journal of Machine Tools and Manufacture, 2014, 77: 66–73
https://doi.org/10.1016/j.ijmachtools.2013.11.003
65 Z Z Ying , L M Shu , N Sugita . Experimental and finite element analysis of force and temperature in ultrasonic vibration assisted bone cutting. Annals of Biomedical Engineering, 2020, 48(4): 1281–1290
https://doi.org/10.1007/s10439-020-02452-w
66 X F Bai , S J Hou , K Li , Y Qu , W Zhu . Analysis of machining process and thermal conditions during vibration-assisted cortical bone drilling based on generated bone chip morphologies. Medical Engineering & Physics, 2020, 83: 73–81
https://doi.org/10.1016/j.medengphy.2020.07.016
67 H M Xie , B Jiang , J J He , X S Xia , F S Pan . Lubrication performance of MoS2 and SiO2 nanoparticles as lubricant additives in magnesium alloy-steel contacts. Tribology International, 2016, 93: 63–70
https://doi.org/10.1016/j.triboint.2015.08.009
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed