Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, The Key Laboratory for Functional Materials of Fujian Higher Education, Institute of Material Physical Chemistry, Huaqiao University, Quanzhou 362021, China
A Poly (3, 4-ethylenedioxythiophene): polystyrenesulfonate (PEDOT:PSS)/carbon conductive paste was prepared and coated on a conducting FTO glass to construct counter electrode for polymer heterojunction dye-sensitized solar cells (DSSCs). The surface morphology, conductivity, sheet resistance, redox properties and photoelectric properties of carbon electrode were observed respectively by scanning electron microscopy, four-probe tester and CHI660D electrochemical measurement system. The experimental results showed that DSSCs had the best photoelectric properties for PEDOT:PSS/carbon counter electrode annealing at 80°C in vacuum conditions. Using [6, 6]-phenyl-C61-butyric acid methyl ester (PCBM)/poly (3-hexylthiophene) (P3HT) heterojunction to replace I3-/I- redox electrolyte, the overall energy conversion efficiency of the DSSCs with barrier layer reached 4.11% under irradiation of a simulated solar light with a intensity of 100 mW·cm-1 (AM 1.5), which is higher 20% than that of the DSSCs with Pt counter electrode (3.42%). The excellent photoelectric properties, simple preparation procedure and low cost allow the PEDOT:PSS/carbon electrode to be a credible alternative used in DSSCs.
O’Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature , 1991, 353(6346): 737–740 doi: 10.1038/353737a0
2
Yu G, Gao J, Hummelen J C, Wudl F, Heeger A J. Polymer photovoltaic cells: enhanced ef?ciencies via a network of internal donor-acceptor heterojunctions. Science , 1995, 270(5243): 1789–1791 doi: 10.1126/science.270.5243.1789
3
Wu J H, Yue G T, Xiao Y M, Ye H F, Lin J M, Huang M L. Application of a polymer heterojunction in dye-sensitized solar cells. Electrochimica Acta , 2010, 55(20): 5798–5802 doi: 10.1016/j.electacta.2010.05.025
4
Gr?tzel M. Solar energy conversion by dye-sensitized photovoltaic cells. Inorganic Chemistry , 2005, 44(20): 6841–6851 doi: 10.1021/ic0508371 pmid:16180840
5
Wu J, Lan Z, Hao S, Li P, Lin J, Huang M, Fang L, Huang Y. Progress on the electrolytes for dye-sensitized solar cells. Pure and Applied Chemistry , 2008, 80(11): 2241–2258 doi: 10.1351/pac200880112241
6
Wu J, Hao S, Lan Z, Lin J, Huang M, Huang Y, Li P, Yin S, Sato T. An all-solid-state dye-sensitized solar cell-based poly(N-alkyl-4-vinyl-pyridine iodide) electrolyte with efficiency of 5.64%. Journal of the American Chemical Society , 2008, 130(35): 11568–11569 doi: 10.1021/ja802158q pmid:18693733
7
Bach U, Lupo D, Comte P, Moser J E, Weissortel F, Salbeck J, Gr?tzel M. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature , 1998, 395(6702): 583–585 doi: 10.1038/26936
Wu J, Lan Z, Lin J M, Huang M L, Hao S C, Sato T, Yin S. A novel thermosetting gel electrolyte for stable quasi-solid-state dye-sensitized solar cells. Advanced Materials (Deerfield Beach, Fla.) , 2007, 19(22): 4006–4011 doi: 10.1002/adma.200602886
10
Peter L M. Dye-sensitized nanocrystalline solar cells. Physical Chemistry Chemical Physics , 2007, 9(21): 2630–2642 doi: 10.1039/b617073k pmid:17627308
11
Papageorgiou N. Counter-electrode function in nanocrystalline photoelectrochemical cell configurations. Coordination Chemistry Reviews , 2004, 248(13–14): 1421–1446 doi: 10.1016/j.ccr.2004.03.028
12
Jeon S S, Kim C, Ko J, Im S S. Spherical polypyrrole nanoparticles as a highly efficient counter electrode for dye-sensitized solar cells. Journal of Materials Chemistry , 2011, 21(22): 8146–8151 doi: 10.1039/c1jm10112a
13
Halme J, Toivola M, Tolvanen A, Lund P. Charge transfer resistance of spray deposited and compressed counter electrodes for dye-sensitized nanoparticle solar cells on plastic substrates. Solar Energy Materials and Solar Cells , 2006, 90(7–8): 872–886 doi: 10.1016/j.solmat.2005.05.007
14
Zhu H W, Zeng H F, Subramanian V, Masarapu C, Hung K H, Wei B. Anthocyanin-sensitized solar cells using carbon nanotube films as counter electrodes. Nanotechnology , 2008, 19(46): 465204 doi: 10.1088/0957-4484/19/46/465204 pmid:21836238
15
Lee W J, Ramasamy E, Lee D Y, Song J S. Efficient dye-sensitized solar cells with catalytic multiwall carbon nanotube counter electrodes. ACS Applied Materials & Interfaces , 2009, 1(6): 1145–1149 doi: 10.1021/am800249k pmid:20355903
16
Ramasamy E, Lee W J, Lee D Y, Song J S. Spray coated multi-wall carbon nano-tube counter electrode for tri-iodide (I3-) reduction in dye-sensitized solar cells. Electrochemistry Communications , 2008, 10(7): 1087–1089 doi: 10.1016/j.elecom.2008.05.013
17
Kay A, Gr?tzel M. Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Solar Energy Materials and Solar Cells , 1996, 44(1): 99–117 doi: 10.1016/0927-0248(96)00063-3
18
Li G R, Wang F, Jiang Q W, Gao X P, Shen P W. Carbon nanotubes with titanium nitride as a low-cost counter-electrode material for dye-sensitized solar cells. Angewandte Chemie International Edition , 2010, 49(21): 3653–3656 pmid:20391550
19
Naja? E, Kim J Y, Han S H, Shin K. UV-ozone treatment of multi-walled carbon nanotubes for enhanced organic solvent dispersion. Colloid Surf. A , 2006, 284-285: 373–378 doi: 10.1016/j.colsurfa.2005.11.074
20
Kim K K, Yoon S M, Choi J Y, Lee J, Kim B K, Kim J M, Lee J H, Paik U, Park M H, Yang C W, An K H, Chung Y, Lee Y H. Design of dispersants for the dispersion of carbon nanotubes in an organic solvent. Advanced Functional Materials , 2007, 17(11): 1775– 1783 doi: 10.1002/adfm.200600915
21
Wu T M, Lin Y W, Liao C S. Preparation and characterization of polyaniline/multi-walled carbon nanotube composites. Carbon , 2005, 43(4): 734–740 doi: 10.1016/j.carbon.2004.10.043
22
Yun D J, Hong K, Kim S, Yun W M, Jang J Y, Kwon W S, Park C E, Rhee S W. Multiwall carbon nanotube and poly(3,4- ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) composite films for transistor and inverter devices. ACS Applied Materials & Interfaces , 2011, 3(1): 43–49 doi: 10.1021/am1008375 pmid:21204559
23
Jonsson S K M, Birgerson J, Crispin X, Greczynski G, Osikowicz W, Gon A W D, Salaneck W R, Fahlman M. The effects of solvents on the morphology and sheet resistance in poly (3, 4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT-PSS) films. Synthetic Metals , 2003, 139(1): 1–10 doi: 10.1016/S0379-6779(02)01259-6
24
Groenendaal L, Jonas F, Feitag D, Pielartzik H, Reynolds J R. Poly (3, 4-ethylenedioxythiophene) and its derivatives: past, present, and future. Advanced Materials (Deerfield Beach, Fla.) , 2000, (12): 482
25
Hwang J, Amy F, Kahn A. Spectroscopic study on sputtered PEDOT· PSS: role of surface PSS layer. Organic Electronics , 2006, 7(5): 387–396 doi: 10.1016/j.orgel.2006.04.005
26
Zhou E, Tan Z, Huo L, He Y, Yang C, Li Y. Effect of branched conjugation structure on the optical, electrochemical, hole mobility, and photovoltaic properties of polythiophenes. Journal of Physical Chemistry B , 2006, 110(51): 26062–26067 doi: 10.1021/jp065442x pmid:17181258
28
Renouard T, Fallahpour R A, Nazeeruddin M K, Humphry-Baker R, Gorelsky S I, Lever A B, Gr?tzel M. Novel ruthenium sensitizers containing functionalized hybrid tetradentate ligands: synthesis, characterization, and INDO/S analysis. Inorganic Chemistry , 2002, 41(2): 367–378 doi: 10.1021/ic010512u pmid:11800627
29
Popov A I, Geske D H. Voltammetric evaluation of the stability of trichloride, tribromide, and triiodide ions in nitromethane, acetone, and acetonitrile. Journal of the American Chemical Society , 1958, 80(6): 1340–1352 doi: 10.1021/ja01539a018
30
Imoto K, Takahashi K, Yamaguchi T, Komura T, Nakamura J, Murata K. High-performance carbon counter electrode for dye-sensitized solar cells. Solar Energy Materials and Solar Cells , 2003, 79(4): 459–469 doi: 10.1016/S0927-0248(03)00021-7
31
Guo H, Li Y, Fan L, Wu X, Guo M. Voltammetric behavior study of folic acid at phosphomolybdic-polypyrrole film modified electrode. Electrochimica Acta , 2006, 51(28): 6230–6237 doi: 10.1016/j.electacta.2006.04.013
32
Huang J, Miller P F, de Mello J C, de Mello A J, Bradley D D C. Influence of thermal treatment on the conductivity and morphology of PEDOT/PSS films. Synthetic Metals , 2003, 139(3): 569–572 doi: 10.1016/S0379-6779(03)00280-7
33
Aasmundtveit K E, Samuelsen E J, Pettersson L A A, Ingan?s O, Johansson T, Feidenhans’l R. Structure of thin films of poly (3, 4-ethylenedioxythiophene). Synthetic Metals , 1999, 101(1–3): 561–564 doi: 10.1016/S0379-6779(98)00315-4
34
Al-Ibrahim M, Ambacher O, Sensfuss S, Gobsch G. Effects of solvent and annealing on the improved performance of solar cells based on poly (3-hexylthiophene): fullerene. Applied Physics Letters , 2005, 86(20): 201120 doi: 10.1063/1.1929875
35
Senadeera G, Kitamura T, Wada Y, Yanagida S. Photosensitization of nanocrystalline TiO2 films by a polymer with two carboxylic groups, poly (3-thiophenemalonic acid). Solar Energy Materials and Solar Cells , 2005, 88(3): 315–322 doi: 10.1016/j.solmat.2005.03.011
36
Lee J, Kim W, Lee H, Shin W, Jin S, Lee W, Kim M. Preparations and photovoltaic properties of dye–sensitized solar cells using thiophene–based copolymers as polymer electrolytes. Polymers for Advanced Technologies , 2006, 17(9–10): 709–714 doi: 10.1002/pat.766
37
Thampi K R, Kiwi J, Gr?tzel M. Methanation and photo-methanation of carbon dioxide at room temperature and atmospheric pressure. Nature , 1987, 327(6122): 506–508 doi: 10.1038/327506a0