Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2009, Vol. 2 Issue (1) : 108-112    https://doi.org/10.1007/s12200-008-0047-8
Research articles
Effect of indium distribution on optical properties in InGaAs/GaAs quantum wells
Guozhi JIA 1, Jianghong YAO 2, Yongchun SHU 2, Xiaodong XIN 2, Biao PI 2,
1.Tianjin Institute of Urban Construction; 2.The Key Lab of Advanced Technique and Fabrication for Weak-Light Nonlinear Photonics Materials, TEDA Applied Physics School, Nankai University;
 Download: PDF(159 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The effect of In surface segregation and diffusion on the transition energy of an InGaAs/GaAs strained quantum well (QW) was investigated theoretically. Diffusion equations and the Schrödinger equation on the InGaAs/GaAs QW were solved numerically. The energy shifts under different diffusion lengths were simulated. When the width of QW, L, is larger than 5 nm, the change rate of the transition energy is very minimal at the initial stage of the annealing process for wide QW, and the transition energy has a rapid blue shift with an increase of the diffusion length. When L is smaller than 5 nm, the transition energy is very sensitive to the diffusion length. The change rate of transition energy increases with a decrease in QW width.
Issue Date: 05 March 2009
 Cite this article:   
Guozhi JIA,Jianghong YAO,Yongchun SHU, et al. Effect of indium distribution on optical properties in InGaAs/GaAs quantum wells[J]. Front. Optoelectron., 2009, 2(1): 108-112.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-008-0047-8
https://academic.hep.com.cn/foe/EN/Y2009/V2/I1/108
Lam Y, Loehr J P, Singh J. Comparison of steady state and transient characteristicsof lattice matched and strained InGaAs-AlGaAs (on GaAs) and InGaAs-AlInAs(on InP) quantum well lasers. IEEE Journalof Quantum Electronics, 1992, 28(5): 1248–1260

doi: 10.1109/3.135265
Suemune I, Coldren L A, Yamanishi M, et al. Extremely wide modulation bandwidth in a lowthreshold current strained quantum well laser. Applied Physics Letters, 1988, 53(15): 1378–1380

doi: 10.1063/1.99984
Chan M C Y, Surya C, Wai P K A. The effects of interdiffusion on the subbands in GaxIn1-xN0.04As0.96/GaAs quantum well for 1.3 and 1.55 µm operation wavelengths. Journal of Applied Physics, 2001, 90(1): 197–201

doi: 10.1063/1.1370110
Muraki K, Fukatsu S, Shiraki Y, et al. Surface segregation of In atoms during molecularbeam epitaxy and its influence on the energy levels in InGaAs/GaAsquantum wells. Applied Physics Letters, 1992, 61(5): 557–559

doi: 10.1063/1.107835
Chattopadhyay K, Aubel J, Sundaram S, et al. Electroreflectance study of effects of indiumsegregation in molecular-beam-epitaxy-grown InGaAs/GaAs. Journal of Applied Physics, 1997, 81(8): 3601–3606

doi: 10.1063/1.365476
Yu H, Roberts C, Murray R. Influence of indium segregation on the emission fromInGaAs/GaAs quantum wells. Applied PhysicsLetters, 1995, 66(17): 2253–2255

doi: 10.1063/1.113183
Martini S, Quivy A A, Tabata A, et al. Reduction of indium segregation in InGaAs/GaAsquantum wells grown by molecular beam epitaxy on vicinal GaAs(001)substrates. Journal of Vacuum Science &Technology B, 2000, 18(4): 1991–1996

doi: 10.1116/1.1303851
Moison J M, Guille C, Houzay F, et al. Surface segregation of third-column atoms ingroup III–V arsenide compounds: Ternary alloys and heterostructures. Physical Review B, 1989, 40(9): 6149–6162

doi: 10.1103/PhysRevB.40.6149
Iyer S S, Tsang J C, Copel M W, et al. Growth temperature dependence of interfacialabruptness in Si/Ge heteroepitaxy studied by Raman spectroscopy andmedium energy ion scattering. Applied PhysicsLetters, 1989, 54(3): 219–221

doi: 10.1063/1.101014
Fukatsu S, Fujita K, Yaguchi H, et al. Self-limitation in the surface segregation ofGe atoms during Si molecular beam epitaxial growth. Applied Physics Letters, 1991, 59(17): 2103–2105

doi: 10.1063/1.106412
Gerard J M, Marzin J Y. Monolayer-scale optical investigationof segregation effects in semiconductor heterostructures. Physical Review B, 1992, 45(11): 6313–6316

doi: 10.1103/PhysRevB.45.6313
Lin Z, Xu F, Weaver J H. Surface segregation at metalndashIII-V-compound-semiconductorinterfaces. Physical Review B, 1987, 36(11): 5777–5783

doi: 10.1103/PhysRevB.36.5777
Ohtake A, Ozeki M, Terauchi M, et al. Strain-induced surface segregation in In0.5Ga0.5As/GaAs heteroepitaxy. Applied Physics Letters, 2002, 80(21): 3931–3933

doi: 10.1063/1.1482792
Schowalter M, Rosenauer A, Gerthsen D. Influence of surface segregation on the optical propertiesof semiconductor quantum wells. AppliedPhysics Letters, 2006, 88(11): 111906.1–111906.3

doi: 10.1063/1.2184907
Tsang J S, Lee C P, Lee S H, et al. Compositional disordering of InGaAs/GaAs heterostructuresby low-temperature-grown GaAs layers. Journalof Applied Physics, 1996, 79(2): 664–670

doi: 10.1063/1.360810
Gonzalez de la Cruz G. Theinfluence of surface segregation on the optical properties of quantumwells. Journal of Applied Physics, 2004, 96(7): 3752–3755

doi: 10.1063/1.1789628
Rosenauer A, Gerthsen D, van Dyck D, et al. Quantification of segregation and mass transportin InxGa1-xAs/GaAs Stranski-Krastanowlayers. Physical Review B, 2001, 64(24): 245334

doi: 10.1103/PhysRevB.64.245334
Matthews J W, Blakeslee A E. Defects in epitaxial multilayers. Journal of Crystal Growth, 1974, 27: 118–125
Gillin W P. Effect of strain on the interdiffusion of InGaAs/GaAs heterostructures. Journal of Applied Physics, 1999, 85(2): 790–793

doi: 10.1063/1.369160
Martini S, Quivy A A, Lamas T E, et al. Real-time RHEED investigation of indium segregationin InGaAs layers grown on vicinal GaAs(001) substrates. Physical Review B, 2005, 72(15): 153304.1–153304.4

doi: 10.1103/PhysRevB.72.153304
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed