Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2009, Vol. 2 Issue (1) : 58-60    https://doi.org/10.1007/s12200-008-0075-4
Research articles
A simple method for measuring dynamic phase changes in a homodyne interferometric fiber-optic sensor
Zefeng WANG , Yongming HU , Zhou MENG , Ming NI ,
College of Photoelectric Science and Engineering, National University of Defense Technology;
 Download: PDF(100 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A simple but reliable measurement method for the dynamic phase shift in a passive homodyne interferometric fiber-optic sensor is proposed. The amplitude of the dynamic phase shift is calculated directly from the photodetector output. A Mach-Zehnder interferometer with a PZT, which is used to generate the simulation signal, is constructed. The experimental results obtained using this simple method are well in agreement with the results given by the standard phase generated carrier (PGC) method, which shows the validity of the results. This new method has the advantages of simplicity of operation, no active element in the sensing head, no modulation to the laser, large dynamic range and working bandwidth, etc. It can be used for the dynamic phase shift measurement of various interferometric fiber-optic sensors.
Issue Date: 05 March 2009
 Cite this article:   
Zefeng WANG,Yongming HU,Zhou MENG, et al. A simple method for measuring dynamic phase changes in a homodyne interferometric fiber-optic sensor[J]. Front. Optoelectron., 2009, 2(1): 58-60.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-008-0075-4
https://academic.hep.com.cn/foe/EN/Y2009/V2/I1/58
Giallorenzi T G, Bucaro J A, Dandridge A, et al. Optical fiber sensor technology. IEEE Transactions on Microwave Theory and Techniques, 1982, 30(4): 472–511

doi: 10.1109/TMTT.1982.1131089
Jackson D A, Priest R, Dandridge A, et al. Elimination of drift in a single-mode opticalfiber interferometer using a piezoelectrically stretched coiled fiber. Applied Optics, 1980, 19(17): 2926–2929

doi: 10.1364/AO.19.002926
Dandridge A, Tveten A, Giallorenzi T. Homodyne demodulation scheme for fiber optic sensorsusing phase generated carrier. IEEE Journalof Quantum Electronics, 1982, 18(10): 1647–1653

doi: 10.1109/JQE.1982.1071416
Koo K P, Tveten A B, Dandridge A. Passive stabilization scheme for fiber interferometersusing (3 × 3) fiber directional couplers. Applied Physics Letters, 1982, 41(7): 616–618

doi: 10.1063/1.93626
Cole J, Danver B, Bucaro J. Synthetic heterodyne interferometric demodulation. IEEE Journal of Quantum Electronics, 1982, 18(4): 694–697

doi: 10.1109/JQE.1982.1071560
Sheem S K, Giallorenzi T G, and Koo K. Optical techniques to solve the signal fading problemin fiber interferometers. Applied Optics, 1982, 21(4): 689–693
Jackson D A, Kersey A D, Corke M, et al. Pseudo-heterodyne detection scheme for opticalinterferometers. Electronics Letters, 1982, 18(25): 1081–1083

doi: 10.1049/el:19820740
Henning L, Thornton S W. Optic fiber hydrophones withdown lead insensitivity. In: Proceedingsof the First International Conference on Optical Fiber Sensors, 1983, 23–27
Kersey A D, Dandridge A, Tveten A B. Time-division multiplexing of interferometric fiber sensorsusing passive phase-generated carrier interrogation. Optics Letters, 1987, 12(10): 775–777

doi: 10.1364/OL.12.000775
Cameron C B, Keolian R M, Garrett S L. A symmetric analogue demodulator for optical fiber interferometricsensors. In: Proceedings of the 34th MidwestSymposium on Circuits and Systems, 1991, 2: 666–671
Bush I J, Sherman D R, Bostick J A. Time-division-multiplexed interferometric demodulationtechnique with 5-million-samples-per-second capability. Proceedings of SPIE, 1992, 1797: 242–248

doi: 10.1117/12.141297
Bush I J, Sherman D R. High-performance interferometricdemodulation techniques. Proceedings ofSPIE, 1992, 1795: 412–420

doi: 10.1117/12.141276
Nash P J. Review of interferometric optical fiber hydrophone technology. In: IEE Proceedings Rador Sonar and Navigation, 1996, 143(3): 204–209

doi: 10.1049/ip-rsn:19960491
Nash P J, Cranch G A, Cheng L K. 32-element TDM optical hydrophone array. Proceedings of SPIE, 1998, 3483: 238–242

doi: 10.1117/12.309682
Lim T K, Zhou Y, Lin Y, et al. Fiber optic acoustic hydrophone with doubleMach-Zehnder interferometers for optical path length compensation. Optics Communications, 1999, 159(4–6): 301–308

doi: 10.1016/S0030-4018(98)00572-0
Lo Y L, Chuang C H. New synthetic-heterodynedemodulator for an optical fiber interferometer. IEEE Journal of Quantum Electronics, 2001, 37(5): 658–663

doi: 10.1109/3.918578
Cranch G A, Nash P J, Kirkendall C K. Large-scale remotely interrogated arrays of fiber-opticinterferometric sensors for underwater acoustic applications. IEEE Sensors Journal, 2003, 3(1): 19–30

doi: 10.1109/JSEN.2003.810102
Wang Z F, Luo H, Xiong S D. Phase compensating detection method of interferometricfiber-optic hydrophones based on tuning the frequency of the laser. Acta Optica Sinica, 2007, 27(4): 654–658 (in Chinese)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed