Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2009, Vol. 2 Issue (4) : 435-441    https://doi.org/10.1007/s12200-009-0064-2
RESEARCH ARTICLE
Charge balance materials for homojunction and heterojunction OLED applications
Louis M. LEUNG(), Yik-Chung LAW, Michael Y. WONG, Tik-Ho LEE, Kin Ming LAI, Lok-Yee TANG
Department of Chemistry and Centre for Advanced Luminescence Materials, Hong Kong Baptist University, Hong Kong, China
 Download: PDF(160 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In a homojunction device, a single organic layer assumes the multiple roles of hole, electron transportation, and emitter. Its ease in processing is highly desirable from the manufacturing point of view. In this paper, we shall describe the synthesis of a range of bipolar small molecules and conductive vinyl polymers for application in homojunction and heterojunction organic light emitting diodes (OLEDs). The bipolar materials, in general, consist of three basic building blocks: an arylamine, a 1,3,4-oxadiazole, and a polycyclic aromatic moiety. The achievement of charge balance can be validated either by direct measurement of electron/hole mobility or indirectly via optimization of device properties. A series of conductive vinyl copolymers containing hole transporting N-(4-methoxyphenyl)-N-(4-vinylphenyl) naphthalen-1-amine (4MeONPA) and electron transporting 2-phenyl-5-(4-vinylphenyl)-1,3,4-oxadiazole (OXA) at different compositions was applied for heterojunction and homojunction OLEDs. For heterojunction devices employed the copolymers as the hole transporting layer and Alq3 as the electron transporting and emitting layer, a maximum luminance and current efficiency of over 23000 cd/m2 and 4.2 cd/A (PL of Alq3), respectively, were achieved at the charge balance composition. Homojunction devices for the copolymers were demonstrated by the addition of rubrene as a dopant. The single layer devices at the optimal copolymer composition has Ca 1500 cd/m2 and 0.74 cd/A.

Keywords homojunction devices      charge balance      bipolar small molecules      conductive vinyl copolymers     
Corresponding Author(s): M. LEUNG Louis,Email:s20974@hkbu.edu.hk   
Issue Date: 05 December 2009
 Cite this article:   
Tik-Ho LEE,Kin Ming LAI,Lok-Yee TANG, et al. Charge balance materials for homojunction and heterojunction OLED applications[J]. Front Optoelec Chin, 2009, 2(4): 435-441.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-009-0064-2
https://academic.hep.com.cn/foe/EN/Y2009/V2/I4/435
Fig.1  Chemical structures of bipolar small molecules with different arylamine chemistry. (a) TOT; (b) TOTPD; (c) TON; (d) TOC
Fig.2  Chemical structure of bipolar small molecules with different number of 1,2,4-oxadiazole units
Fig.3  Chemical structure of bipolar small molecules with different aromatic moieties. (a) POT; (b) PPOT; (c) NOT; (d) AOT; (e) PyOT; (f) AceOT
Fig.4  TOF measurement of hole and electron mobility for bipolar compound AOT (temperature is 289?K)
Fig.5  Chemical structure of conductive vinyl copolymers (poly(MeONPA/OXD)) for charge balance Alq-based heterojunction OLED application
device structuresλmaxEL (80?mA/cm2)/nmFWHM(80?mA/cm2) /nmmax luminance /(cd·m-2)voltage at max luminance /Vmax device efficiency /(cd·A-1)current density at max device efficiency /(mA·cm-2)voltage (25?mA/cm2)/V
(S1) ITO/PEDOT:PSS/P(MeONPA)/Ca/Al4558523212.80.11128.6
(S2) ITO/PEDOT:PSS/P(MeONPA-co-OXD 69∶31)/Ca/Al46080420150.122399.6
(S3) ITO/PEDOT:PSS/P(MeONPA-co-OXD 47∶53)/Ca/Al4558033615.40.226711.3
(S4) ITO/PEDOT:PSS/P(MeONPA-co-OXD 26∶74)/Ca/Al4587665210.0413315
(S5) ITO/PEDOT:PSS/P(OXD)/Ca/Aln/an/an/an/an/an/a17
(S6) ITO/PEDOT:PSS/P(MeONPA-co-OXD 69∶31+0.01 wt% rubrene)/Ca/Al456550n/a532140.184010.1
(S7) ITO/PEDOT:PSS/P(MeONPA-co-OXD 69∶31+0.1 wt% rubrene)/Ca/Al456550n/a1484170.744513.4
(S8) ITO/PEDOT:PSS/P(MeONPA-co-OXD 69∶31+1.0 wt% rubrene)/Ca/Al55467126018.80.5611614.8
(S9) ITO/PEDOT:PSS/P(MeONPA-co-OXD 69∶31+5.0 wt% rubrene)/Ca/Al56270232250.15718.1
Tab.1  Device properties of both undoped (S1-S5) and rubrene doped (S6-S9) homojunctions PLEDs
Fig.6  EL spectrum of rubrene doped homojunction PLEDs
Fig.7  CIE coordinate for near white device S6 (0.01 wt% rubrene)
1 Tang C W, Van Slyke S A. Organic electroluminescent diodes. Applied Physics Letters , 1987, 51(12): 913-915
doi: 10.1063/1.98799
2 Yang Y. Polymer electoluminescent devices. MRS Bulletin , 1997, 22(6): 31-34
3 Adachi C, Tsutsui T, Saito S. Blue light-emitting organic electroluminescent devices. Applied Physics Letters , 1990, 56(9): 799-801
doi: 10.1063/1.103177
4 Hou L D, Duan L, Qiao J, Li W, Zhang D Q, Qiu Y. Efficient single layer solution-processed blue-emitting electrophosphorescent devices based on a small-molecule host. Applied Physics Letters , 2008, 92(26): 263301
doi: 10.1063/1.2952483
5 Higginson K A, Zhang X M, Papadimitrakopoulos F. Thermal and morphological effects on the hydrolytic stability of aluminum tris(8-hydroxyquinoline) (Alq3). Chemistry of Materials , 1998, 10(4): 1017-1020
doi: 10.1021/cm970599a
6 Hung L S, Lee S T. Electrode modification and interface engineering in organic light- emitting diodes. Materials Science and Engineering: B , 2001, 85(2-3): 104-108
doi: 10.1016/S0921-5107(01)00539-6
7 Lee T H, Tong K L, So S K, Leung L M. Synthesis and electroluminescence of thiophene-based bipolar small molecules with different arylamine moieties. Synthetic Metals , 2005, 155(1): 116-124
doi: 10.1016/j.synthmet.2005.06.020
8 Xiang N J, Lee T H, Gong M L, Tong K L, So S K, Leung L M. Synthesis of 2-phenylquinoline-based ambipolar molecules containing multiple 1,3,4-oxadiazole spacer groups. Synthetic Metals , 2006, 156(2-4): 270-275
doi: 10.1016/j.synthmet.2005.12.005
9 Lee T H. “Synthesis and characterization of electroluminescent bipolar small molecules and polymers”. Dissertation for the Doctoral Degree . Hong Kong: Hong Kong Baptist University, 2007
10 Lee T H, Tong K L, So S K, Leung L M. High-mobility hole-transporting polymers for electroluminescence applications. Japanese Journal of Applied Physics , 2005, 44(1): 543-545
doi: 10.1143/JJAP.44.543
11 Yuan J B, Leung L M, Gong M L. Synthesis of efficient blue and red light emitting phenanthroline derivatives containing both hole and electron transporting properties. Tetrahedron Letters , 2004, 45(33): 6361-6363
doi: 10.1016/j.tetlet.2004.06.087
12 Goodbrand H B. US Patent, 5648539, 1997
13 Behl M. Hattemer E, Brehmer M, Zentel R. Tailored semiconducting polymers: living radical polymerization and NLO-functionalization of triphenylamines. Macromolecular Chemistry Physics , 2002, 203(3): 503-510
doi: 10.1002/1521-3935(20020201)203:3<503::AID-MACP503>3.0.CO;2-P
14 So S K, Choi W K, Cheng C H, Leung L M, Kwong C F. Surface preparation and characterization of indium tin oxide substrates for organic electroluminescent devices. Applied Physics A: Materials Science and Processing , 1999, 68(4): 447-450
doi: 10.1007/s003390050921
15 Lee T H, Lai K M, Leung L M. Hole-limiting conductive vinyl copolymers for AlQ3-based OLED applications. Polymer , 2009, 50(19), 4602-4611
doi: 10.1016/j.polymer.2009.07.034
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed