Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2009, Vol. 2 Issue (4) : 397-402    https://doi.org/10.1007/s12200-009-0074-0
RESEARCH ARTICLE
Propagation properties of beams generated by Gaussian mirror resonator in fractional Fourier transform plane
Bin TANG()
School of Mathematics and Physics, Jiangsu Polytechnic University, Changzhou 213164, China
 Download: PDF(165 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Based on the definition of the fractional Fourier transform (FRFT) and irradiance moments in the cylindrical coordinate system, the propagation expressions and kurtosis parameter of beams generated by Gaussian mirror resonator passing through the ideal fractional Fourier transformation systems are obtained. The propagation properties and kurtosis parametric characteristic of the beams in the FRFT plane are analyzed in detail. Some numerical examples are given to illustrate the analytical results. The influences of the fractional order on the intensity distribution and the kurtosis parameter of the beams are also investigated. The results show that the intensity distribution and the kurtosis parameter of the beams in the FRFT plane are closely related to the fractional order and beam parameters.

Keywords Gaussian mirror resonator      fractional Fourier transform (FRFT)      propagation property      kurtosis parameter     
Corresponding Author(s): TANG Bin,Email:csu_tangbin@163.com   
Issue Date: 05 December 2009
 Cite this article:   
Bin TANG. Propagation properties of beams generated by Gaussian mirror resonator in fractional Fourier transform plane[J]. Front Optoelec Chin, 2009, 2(4): 397-402.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-009-0074-0
https://academic.hep.com.cn/foe/EN/Y2009/V2/I4/397
Fig.1  Optical system for performing FRFT. (a) One-lens system; (b) two-lens system
Fig.2  Intensity distribution of beams generated by Gaussian mirror resonator in fractional plane after going through FRFT systems with a different fractional order p. (a) =0.1; (b) =0.7; (c) =1; (d) =1.1; (e) =1.3; (f) =1.9
Fig.3  Normalized on-axis intensity with different beam waists and focal lengths in fractional plane with varying fractional order (=0.7, =1.5). (a) =1.5 mm; (b) =200 mm
Fig.4  Variations of kurtosis parameter for different beams () generated by Gaussian mirror resonator versus fractional orders passage through ideal FRFT systems (=1.5 mm, =200 mm). (a) =1.0; (b) =0.7
1 Mendlovic D, Ozaktas H M. Fractional Fourier transforms and their optical implementation: I. Journal of the Optical Society of America A , 1993, 10(9): 1875–1881
doi: 10.1364/JOSAA.10.001875
2 Ozaktas H M, Mendlovic D. Fractional Fourier transforms and their optical implementation: II. Journal of the Optical Society of America A , 1993, 10(12): 2522–2531
doi: 10.1364/JOSAA.10.002522
3 Lohmann A W. Image rotation, Wigner rotation, and the fractional Fourier transform. Journal of the Optical Society of America A , 1993, 10(10): 2181–2186
doi: 10.1364/JOSAA.10.002181
4 Zhang Y, Dong B, Gu B, Yang G. Beam shaping in the fractional Fourier transform domain. Journal of the Optical Society of America A , 1998, 15(5): 1114–1120
doi: 10.1364/JOSAA.15.001114
5 Xue X, Wei H Q, Kirk A G. Beam analysis by fractional Fourier transform. Optics Letters , 2001, 26(22): 1746–1748
doi: 10.1364/OL.26.001746
6 Lin Q, Cai Y. Fractional Fourier transform for partially coherent Gaussian-Schell model beams. Optics Letters , 2002, 27(19): 1672–1674
doi: 10.1364/OL.27.001672
7 Cai Y, Lin Q. Fractional Fourier transform for elliptical Gaussian beams. Optics Communications , 2003, 217(1-6): 7–13
8 Cai Y, Lin Q. Properties of a flattened Gaussian beam in the fractional Fourier transform plane. Journal of Optics A: Pure and Applied Optics , 2003, 5(3): 272–275
doi: 10.1088/1464-4258/5/3/321
9 Cai Y, Lin Q. Transformation and spectrum properties of partially coherent beams in the fractional Fourier transform plane. Journal of the Optical Society of America A , 2003, 20(8): 1528–1536
doi: 10.1364/JOSAA.20.001528
10 Cai Y, Ge D, Lin Q. Fractional Fourier transform for partially coherent and partially polarized Gaussian-Schell model beams. Journal of Optics A: Pure and Applied Optics , 2003, 5(5): 453–459
doi: 10.1088/1464-4258/5/5/304
11 Cai Y, Lin Q. The fractional Fourier transform for a partially coherent pulse. Journal of Optics A: Pure and Applied Optics , 2004, 6(4): 307–311
doi: 10.1088/1464-4258/6/4/003
12 Zhao D, Mao H, Liu H, Wang S, Jing F, Wei X. Propagation of Hermite-cosh-Gaussian beams in apertured fractional Fourier transforming systems. Optics Communications , 2004, 236(4-6): 225–235
doi: 10.1016/j.optcom.2004.03.047
13 Zhao D, Mao H, Zheng C, Wang S, Jing F, Wei X, Zhu Q, Liu H. The propagation properties and kurtosis parametric characteristics of Hermite-cosh-Gaussian beams passing through fractional Fourier transformation systems. Optik - International Journal for Light and Electron Optics , 2005, 116(10): 461–468
14 Zheng C. Fractional Fourier transform for a hollow Gaussian beam. Physics Letters A , 2006, 355(2): 156–161
doi: 10.1016/j.physleta.2006.02.025
15 Zheng C. Fractional Fourier transform for off-axis elliptical Gaussian beams. Optics Communications , 2006, 259(2): 445–448
doi: 10.1016/j.optcom.2005.09.015
16 Du X, Zhao D. Fractional Fourier transform of truncated elliptical Gaussian beams. Applied Optics , 2006, 45(36): 9049–9052
doi: 10.1364/AO.45.009049
17 Du X, Zhao D. Fractional Fourier transforms of elliptical Hermite-cosh-Gaussian beams. Physics Letters A , 2007, 366(3): 271–275
doi: 10.1016/j.physleta.2007.02.019
18 Du X, Zhao D. Fractional Fourier transform of off-axial elliptical cosh-Gaussian beams. Optik - International Journal for Light and Electron Optics , 2008, 119(8): 379–382
19 Zheng C. Fractional Fourier transform of an elliptical dark-hollow beam. Optics and Laser Technology , 2008, 40(4): 632–640
doi: 10.1016/j.optlastec.2007.09.008
20 Zhou G. Fractional Fourier transform of a higher-order cosh-Gaussian beam. Journal of Modern Optics , 2009, 56(7): 886–892
doi: 10.1080/09500340902783816
21 Zhou G. Fractional Fourier transform of Lorentz-Gaussian beams. Journal of the Optical Society of America A , 2009, 26(2): 350–355
doi: 10.1364/JOSAA.26.000350
22 Chen S, Zhang T, Feng X. Propagation properties of cosh-squared-Gaussian beam through fractional Fourier transform systems. Optics Communications , 2009, 282(6): 1083–1087
doi: 10.1016/j.optcom.2008.12.002
23 Ganiel U, Hardy A. Eigenmodes of optical resonators with mirrors having Gaussian reflectivity profiles. Applied Optics , 1976, 15(9): 2145–2149
doi: 10.1364/AO.15.002145
24 McCarthy N, Lavigne P. Optical resonators with Gaussian reflectivity mirrors: misalignment sensitivity. Applied Optics , 1983, 22(17): 2704–2708
doi: 10.1364/AO.22.002704
25 McCarthy N, Lavigne P. Large-size Gaussian mode in unstable resonators using Gaussian mirrors. Optics Letters , 1985, 10(11): 553–555
doi: 10.1364/OL.10.000553
26 Deng D, Wei C, Yi K, Shao J, Fan Z, Tian Y. Propagation properties of beam generated by Gaussian mirror resonator. Optics Communications , 2006, 258(1): 43–50
doi: 10.1016/j.optcom.2005.07.053
27 Deng D, Xia Z, Wei C, Shao J, Fan Z. Far-field intensity distribution, M2 factor of beams generated by Gaussian mirror resonator. Optik - International Journal for Light and Electron Optics , 2007, 118(11): 533–536
28 Deng D, Shen J, Tian Y, Shao J, Fan Z. Propagation properties of beams generated by Gaussian mirror resonator in uniaxial crystals. Optik - International Journal for Light and Electron Optics , 2007, 118(11): 547–551
29 Martinez-Herrero R, Piquero G, Mejias P M. On the propagation of the kurtosis parameter of general beams. Optics Communications , 1995, 115(3-4): 225–232
doi: 10.1016/0030-4018(95)00012-W
30 Amarande S A. Beam propagation factor and the kurtosis parameter of flattened Gaussian beams. Optics Communications , 1996, 129(5-6): 311–317
[1] Lavish KANSAL, Vishal SHARMA, Jagjit Singh MALHOTRA. MIMO-WiMAX system incorporated with diverse transformation for 5G applications[J]. Front. Optoelectron., 2019, 12(3): 296-310.
[2] Xinting JIA, Bo LI, Youqing WANG, Qing LI, Hongyan HUANG. Propagation properties of a cylindrically polarized vector beam[J]. Front Optoelec Chin, 2009, 2(4): 414-418.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed