Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2010, Vol. 3 Issue (2) : 163-168    https://doi.org/10.1007/s12200-010-0008-x
Research articles
Evaluation of Er,Cr:YSGG laser for hard tissue ablation: an in vitro study
Xianzeng ZHANG1,Shusen XIE1,Zhenlin ZHAN1,Haibin ZHAO1,Jian GUO1,Qing YE2,
1.Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou 350007, China; 2.Department of Otolaryngology, Fujian Provincial Hospital, Fuzhou 350001, China;Fujian Provincial Clinical College, Fujian Medical University, Fuzhou 350001, China;
 Download: PDF(247 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The use of erbium,chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser with a wavelength of 2.78μm for hard bone tissue ablation was evaluated. The surface morphology and microstructure changes of bone tissue treated with Er,Cr:YSGG were analyzed as compared to those treated with diamond drill. The influence of fluence on ablation rate and ablation efficiency as well as microstructure was also examined. The results show that Er,Cr:YSGG laser can perform bone perforation that is more fine and presented a lot of unique advantages compared to traditional methods. An approximately linear relationship was observed between the ablation rate/ablation efficiency and radiant exposure. Increasing the radiant exposure irradiated on bone tissue will produce stronger thermal injury around the crater and result in microstructure changing.
Issue Date: 05 June 2010
 Cite this article:   
Xianzeng ZHANG,Shusen XIE,Zhenlin ZHAN, et al. Evaluation of Er,Cr:YSGG laser for hard tissue ablation: an in vitro study[J]. Front. Optoelectron., 2010, 3(2): 163-168.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-010-0008-x
https://academic.hep.com.cn/foe/EN/Y2010/V3/I2/163
Meister J, Franzen R, Gavenis K, Zaum M, Stanzel S, Gutknecht N, Schmidt-Rohlfing B. Ablation of articular cartilage withan erbium:YAG laser: an ex vivo study using porcine models under realconditions-ablation measurement and histological examination. Lasers in Surgery and Medicine, 2009, 41(9): 674–685

doi: 10.1002/lsm.20848
Shahar R, Weiner S. Insights into whole bone and tooth function using optical metrology. Journal of Materials Science, 2007, 42(21): 8919–8933

doi: 10.1007/s10853-007-1693-8
Werner M, Ivanenko M, Harbecke D, Klasing M, Steigerwald H, Hering P. Laser osteotomy with pulsedCO2 lasers. Advances in Medical Engineering, 2007, 114: 453–457

doi: 10.1007/978-3-540-68764-1_76
Youn J I, Sweet P, Peavy G M. A comparison of mass removal, thermalinjury, and crater morphology of cortical bone ablation using wavelengths2.79, 2.9, 6.1, and 6.45 microm. Lasers in Surgery and Medicine, 2007, 39(4): 332–340

doi: 10.1002/lsm.20482
Youn J I, Sweet P, Peavy G M, Venugopalan V. Mid-IR laser ablation of articular and fibro-cartilage: a wavelength dependencestudy of thermal injury and crater morphology. Lasers in Surgery and Medicine, 2006, 38(3): 218–228

doi: 10.1002/lsm.20288
Ivanenko M, Sader R, Afilal S, Werner M, Hartstock M, Von Hänisch C, Milz S, Erhardt W, Zeilhofer H F, Hering P. In vivo animal trials with a scanning CO2 laser osteotome. Lasers in Surgery and Medicine, 2005, 37(2): 144–148

doi: 10.1002/lsm.20207
Ivanenko M, Werner M, Afilal S, Klasing M, Hering P. Ablation of hard bone tissue with pulsed CO2 lasers. Medical Laser Application, 2005, 20(1): 13–23

doi: 10.1016/j.mla.2005.02.007
Frentzen M, Götz W, Ivanenko M, Afilal S, Werner M, Hering P. Osteotomy with 80-μs CO2 laser pulses: histological results. Lasers in Medical Science, 2003, 18(2): 119–124

doi: 10.1007/s10103-003-0264-8
Ivanov B, Hakimian A M, Peavy G M, Haglund R F Jr. Mid-infrared laser ablation of a hard biocomposite material:mechanistic studies of pulse duration and interface effects. Applied Surface Science, 2003, 208―209: 77–84

doi: 10.1016/S0169-4332(02)01339-9
Ivanenko M M, Fahimi-Weber S, Mitra T, Wierich W, Hering P. Bone tissue ablation with sub-μs pulses of a Q-switch CO2 laser: histological examination of thermal side effects. Lasers in Medical Science, 2002, 17(4): 258–264

doi: 10.1007/s101030200038
Fried N M, Fried D. Comparison of Er:YAG and 9.6-microm TE CO2 lasers for ablation of skull tissue. Lasers in Surgery and Medicine, 2001, 28(4): 335–343

doi: 10.1002/lsm.1059
Forrer M, Frenz M, Romano V, Altermatt H J, Weber H P, Silenok A, Istomyn M, Konov V I. Bone-ablation mechanism usingCO2 lasers of different pulse duration andwavelength. Applied Physics B, 1993, 56(2): 104–112

doi: 10.1007/BF00325248
Featherstone J D B, Fried D. Fundamental interactions of lasers with dental hard tissues. Medical Laser Application, 2001, 16(3): 181–194

doi: 10.1078/1615-1615-00022
Kang H W, Rizoiu I, Welch A J. Hard tissue ablation witha spray-assisted mid-IR laser. Physics in Medicine and Biology, 2007, 52(24): 7243–7259

doi: 10.1088/0031-9155/52/24/004
Izatt J A, Albagli D, Britton M, Jubas J M, Itzkan I, Feld M S. Wavelength dependence ofpulsed laser ablation of calcified tissue. Lasers in Surgery and Medicine, 1991, 11(3): 238–249

doi: 10.1002/lsm.1900110307
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed