Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2011, Vol. 4 Issue (4) : 382-386    https://doi.org/10.1007/s12200-011-0179-0
RESEARCH ARTICLE
Synthesis and optical properties of europium pentafluoropropionate 1,10-phenanthroline complex and its silica glass
Jiangbo SHE1, Dongdong LI2()
1. State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences (CAS), Xi’an 710119, China; 2. Department of Electronic and Information Engineering, Xi’an Institute of Post & Telecommunications, Xi’an 710121, China
 Download: PDF(123 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Europium pentafluoropropionate 1,10-phenanthroline complex, Eu(C2F5COO)3·Phen (Phen= 1,10-phenanthroline), were synthesized and characterized by elemental analysis, Fourier transform infrared spectroscopy (FT-IR), photoluminescence (PL) spectroscopy and thermogravimetric analysis (TA). At the same time, its silica glass was synthesized by in situ processes. The excitation spectra of the complex demonstrate that the energy collected by “antenna ligands” was transferred to Eu3+ ions efficiently. The room-temperature PL spectra of the complexes are composed of the typical Eu3+ ions red emission, due to transitions between 5D07FJ(J = 0→4). The decomposition temperature of the complex was 290°C, which indicates the host complex is quite stable to heat. Then the affection of anneal temperatures on PL properties of SiO2 glass were studied. The PL intensity of the SiO2 glass annealed at 160°C was higher than other annealed temperatures for 24 h in air.

Keywords organometallic complex      silica glass      luminescent property     
Corresponding Author(s): LI Dongdong,Email:dongdong19821111@163.com   
Issue Date: 05 December 2011
 Cite this article:   
Jiangbo SHE,Dongdong LI. Synthesis and optical properties of europium pentafluoropropionate 1,10-phenanthroline complex and its silica glass[J]. Front Optoelec Chin, 2011, 4(4): 382-386.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-011-0179-0
https://academic.hep.com.cn/foe/EN/Y2011/V4/I4/382
Fig.1  TGA and DTA curves of the complex
Fig.2  Room temperature excitation spectra ( = 612 nm) of the complex (solid line) and the silica glass (dash line)
Fig.3  Room temperature emission spectra ( = 329 nm) of Eu(CFCOO)·Phen. Inset is the decay curve monitored at 612 nm
materialΩ2/(10-20 cm2)Ω4/(10-20 cm2)Arad/(s-1)Anr/(s-1)τobs/μsη/%σ/(10-22 cm2)Refs.
this work4.422.07170140322754.820.1
Eu(hfa)3(BIPHEPO)48.111004.64[21]
Eu3+:L5FBE5.644.44188224012.3[22]
Tab.1  Judd–Ofelt parameters (), radiative () and nonradiative decay rate (), D lifetime (), quantum yield () for europium doped materials
1 Fuhrmann T, Salbeck J. Organic materials for photonic devices. MRS Bulletin , 2003, 28(5): 354–359
doi: 10.1557/mrs2003.100
2 Kataoka Y, Paul D, Miyake H, Shinoda S, Tsukube H. A Cl–anion-responsive luminescent Eu3+ complex with a chiral tripod: ligand substituent effects on ternary complex stoichiometry and anion sensing selectivity. Dalton Transactions (Cambridge, England) , 2007, (26): 2784–2791
doi: 10.1039/b703944a
3 Shao N, Jin J Y, Wang G L, Zhang Y, Yang R H, Yuan J L. Europium(III) complex-based luminescent sensing probes for multi-phosphate anions: modulating selectivity by ligand choice. Chemical Communications , 2008, 9: 1127–1129
doi: 10.1039/b715719c
4 Song B, Wang G L, Tan M Q, Yuan J L. A europium (III) complex as an efficient singlet oxygen luminescence probe. Journal of the American Chemical Society , 2006, 128(41): 13442–13450
doi: 10.1021/ja062990f
5 Tremblay M S, Halim M, Sames D. Cocktails of Tb3+ and Eu3+ complexes: a general platform for the design of ratiometric optical probes. Journal of the American Chemical Society , 2007, 129(24): 7570–7577
doi: 10.1021/ja070867y
6 Kin E, Fukudaa T, Yamauchia S, Hondaa Z, Oharab H, Yokoob T, Kijimab N, Kamataa N. Thermal stability of europium(III) chelate encapsulated by sol-gel glass. Journal of Alloys and Compounds , 2009, 480(2): 908–911
doi: 10.1016/j.jallcom.2009.02.063
7 Hench L L, West J K. The sol-gel process. Chemical Reviews , 1990, 90(1): 33–72
doi: 10.1021/cr00099a003
8 Lehn J M. Perspectives in supramolecular chemistry from molecular recognition towards molecular information-processing and self-organization. Angewandte Chemie International Edition in English , 1990, 29(11): 1304–1319
doi: 10.1002/anie.199013041
9 Jin L P, Lu S X, Lu S Z. Crystal structure and spectra of complex [Eu(o-ABA)3bipy]bipy. Polyhedron , 1996, 15(22): 4069–4077
doi: 10.1016/0277-5387(96)00113-1
10 de Sá G F, Malta O L, de Mello Donegá C, Simas A M, Longo R L, Santa-Cruz P A, da Silva E F Jr. Spectroscopic properties and design of highly luminescent lanthanide coordination complexes. Coordination Chemistry Reviews , 2000, 196(1): 165–195
doi: 10.1016/S0010-8545(99)00054-5
11 Hasegawa Y, Yamamuro M, Wada Y, Kanehisa N, Kai Y, Yanagida S. Luminescent polymer containing the Eu(III) complex having fast radiation rate and high emission quantum efficiency. Journal of Physical Chemistry A , 2003, 107(11): 1697–1702
doi: 10.1021/jp022397u
12 Malta O L, Legendziewicz J, Huskowska E, Turowska-Tyrk I, Albuquerque R Q, de Mello Donegá C, e Silva F R G. Experimental and theoretical study of ligand field, 4f–4f intensities and emission quantum yield in the compound Eu(bpyO2)4(ClO4)3. Journal of Alloys and Compounds , 2001, 323-324: 654–660
doi: 10.1016/S0925-8388(01)01027-1
13 de Farias R F, Alves Jr. S,Belian M F, Vieira M R S, de Souza J M, Pedrosa G G, de Sá G F. Spectroscopic study of transparent self-standing films of (3-glycidoxypropyl) trimethosysilane and (3-trimethoxysilylpropyl) ethylenediamine doped with europium complexes. Optical Materials , 2003, 24(3): 453–456
doi: 10.1016/S0925-3467(03)00027-2
14 Werts M H V, Jukes R T F, Verhoeven J W. The emission spectrum and the radiative lifetime of Eu3+ in luminescent lanthanide complexes. Physical Chemistry Chemical Physics , 2002, 4(9): 1542–1548
doi: 10.1039/b107770h
15 Malta O L, Brito H F, Menezes J F S, e Silva F R G, Alves S Jr, Farias F S Jr, de Andrade A V M. Spectroscopic properties of a new light-converting device Eu(thenoyltrifluoroacetonate)3 2(dibenzyl sulfoxide). A theoretical analysis based on structural data obtained from a sparkle model. Journal of Luminescence , 1997, 75(3): 255–268
doi: 10.1016/S0022-2313(97)00107-5
16 Carnall W T, Crosswhite H, Crosswhite H M. Energy levels structure and transition probabilities of the trivalent lanthanides in LaF3. Argonne National Laboratory : Argonne, IL , 1977
17 de Mello Donegá C, Alves S Jr, de Sá G F. Synthesis, luminescence and quantum yields of Eu(III) mixed complexes with 4,4,4-trifluoro-1-phenyl-1,3-butanedione and 1,10-phenanthroline-N-oxide. Journal of Alloys and Compounds , 1997, 250(1-2): 422–426
doi: 10.1016/S0925-8388(96)02562-5
18 Chen B, Luo Y H, Liang H, Xu J, Guo F Q, Zhang Y Z, Lin A B, Liu X. Optical properties of a tetradentate bis(β-diketonate) europium(III) complex. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy 2008, 70(5): 1203–1207
doi: 10.1016/j.saa.2007.10.041
19 Weber M J, Varitimos T E, Matsinger B H. Optical intensities of rare-earth ions in yttrium orthoaluminate. Physical Review B: Condensed Matter and Materials Physics , 1973, 8(1): 47–53
doi: 10.1103/PhysRevB.8.47
20 Guan J B, Chen B, Sun Y Y, Liang H, Zhang Q J. Effects of synergetic ligands on the thermal and radiative properties of Eu(TTA)3nL-doped poly(methyl methacrylate). Journal of Non-Crystalline Solids , 2005, 351(10-11): 849–855
doi: 10.1016/j.jnoncrysol.2005.02.011
21 Nakamura K, Hasegawa Y, Kawai H, Yasuda N, Kanehisa N, Kai Y, Nagamura T, Yanagida S, Wada Y. Enhanced lasing properties of dissymmetric Eu(III) complex with bidentate phosphine ligands. Journal of Physical Chemistry A , 2007, 111(16): 3029–3037
doi: 10.1021/jp067672h
22 Babu P, Jayasankar C K. Optical spectroscopy of Eu3+ ions in lithium borate and lithium fluoroborate glasses. Physica B, Condensed Matter , 2000, 279(4): 262–281
doi: 10.1016/S0921-4526(99)00876-5
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed