Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2012, Vol. 5 Issue (1) : 107-111    https://doi.org/10.1007/s12200-012-0196-7
RESEARCH ARTICLE
Annealing effect on optical and electronic properties of silicon rich amorphous silicon-carbide films
Shuxin LI1, Yunjun RUI1,2, Yunqing CAO1, Jun XU1(), Kunji CHEN1
1. Nanjing National Laboratory of Microstructures, School of Electronic Science and Engineering, School of Physics, Nanjing University, Nanjing 210093, China; 2. Department of Applied Physics, Nanjing University of Technology, Nanjing 210009, China
 Download: PDF(139 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A series of Si-rich amorphous silicon carbide (a-SiC:H) thin films were deposited in conventional plasma enhanced chemical vapor deposition system with various gas ratio R = [CH4]/[SiH4]. The microstructural, optical and electronic properties of as-deposited films were investigated in this study. It was found that optical band gap was linearly proportional to carbon content in the films and it could be controlled in a range of 1.8–2.4 eV by changing the gas ratio, R. Both dark and photo conductivities in room temperature were decreased with the increasing of carbon content in the films, and the photosensitivity reached as high as 104 for the film with the optical band gap of 1.96 eV. The as-deposited samples were subsequently annealed at the temperatures of 900°C and 1000°C. The formation of nanocrystalline silicon (nc-Si) dots in amorphous silicon carbide (a-SiC) host matrix was shown. The dark conductivity was enhanced by five orders of magnitude after annealing compared with that of as-deposited films. The result of temperature-dependent conductivity suggested that the property of carrier transport was dominated by conduction process between the extended states. Furthermore, room temperature electroluminescence (EL) was achieved from nc-Si/SiC system and the possible mechanism of radiative recombination mechanism was discussed.

Keywords amorphous silicon carbide (a-SiC)      optical band gap      photo-conductivity      dark conductivity      electroluminescence (EL)     
Corresponding Author(s): XU Jun,Email:junxu@nju.edu.cn   
Issue Date: 05 March 2012
 Cite this article:   
Shuxin LI,Yunjun RUI,Yunqing CAO, et al. Annealing effect on optical and electronic properties of silicon rich amorphous silicon-carbide films[J]. Front Optoelec, 2012, 5(1): 107-111.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-012-0196-7
https://academic.hep.com.cn/foe/EN/Y2012/V5/I1/107
Fig.1  Optical band gap as a function of the carbon content for as-deposited a-SiC:H films
Fig.2  Absorption coefficient spectra of as-deposited a-SiC:H films
Fig.3  Dark and photo-conductivity of as-deposited a-SiC:H films measured at room temperature
Fig.4  Raman spectra of the sample with carbon content = 0.27 before and after annealing at 900°C and 1000°C
Fig.5  Temperature-dependent dark conductivity of the as-deposited, 900°C and 1000°C annealed sample with the carbon content = 0.27
Fig.6  (a) Room temperature EL spectra of the sample with the carbon content = 0.27 after annealing at 900°C and 1000°C measured at the same injection current ( = 44 mA); (b) EL spectra of 900°C annealed a-SiC film and 900°C annealed a-SiC film
1 Beard M C, Knutsen K P, Yu P, Luther J M, Song Q, Metzger W K, Ellingson R J, Nozik A J. Multiple exciton generation in colloidal silicon nanocrystals. Nano Letters , 2007, 7(8): 2506-2512
doi: 10.1021/nl071486l pmid:17645368
2 Marsal L F, Pallares J, Correig X, Orpella A, Bardés D, Alcubilla R. Analysis of conduction mechanisms in annealed n-Si1-xCx:H/p-crystalline Si heterojunction diodes for different doping concentrations. Journal of Applied Physics , 1999, 85(2): 1216-1221
doi: 10.1063/1.369344
3 Kurokawa Y, Yamada S, Miyajima S, Yamada A, Konagai M. Effects of oxygen addition on electrical properties of silicon quantum dots/amorphous silicon carbide superlattice. Current Applied Physics , 2010, 10(3): S435-S438
doi: 10.1016/j.cap.2010.02.014
4 Song D Y, Cho E C, Conibeer G, Flynn C, Huang Y D, Green M A. Structural, electrical and photovoltaic characterization of Si nanocrystals embedded SiC matrix and Si nanocrystals/c-Si heterojunction devices. Solar Energy Materials and Solar Cells , 2008, 92(4): 474-481
doi: 10.1016/j.solmat.2007.11.002
5 Hanna M C, Nozik A J. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. Journal of Applied Physics , 2006, 100(7): 074510-074518
doi: 10.1063/1.2356795
6 Conibeer G, Green M, Corkish R, Cho Y, Cho E, Jiang C, Fangsuwannarak T, Pink E, Huang Y, Puzzer T. Silicon nanostructures for third generation photovoltaic solar cells. Thin Solid Films , 2006, 511-512: 654-662
doi: 10.1016/j.tsf.2005.12.119
7 Künle M, Kaltenbach T, L?per P, Hartel A, Janz S, Eibl O, Nickel K G. Si-rich a-SiC:H thin films: structural and optical transformations during thermal annealing. Thin Solid Films , 2010, 519(1): 151-157
doi: 10.1016/j.tsf.2010.07.085
8 Jiang C W, Green M A. Silicon quantum dot superlattices: modeling of energy bands, densities of states, and mobilities for silicon tandem solar cell applications. Journal of Applied Physics , 2006, 99(11): 114902-114908
doi: 10.1063/1.2203394
9 Solomon I, Schmidt M P, Tran-Quoc H. Selective low-power plasma decomposition of silane-methane mixtures for the preparation of methylated amorphous silicon. Physical Review B: Condensed Matter and Materials Physics , 1988, 38(14): 9895-9901
doi: 10.1103/PhysRevB.38.9895 pmid:9945813
10 Xu J, Yang L, Rui Y, Mei J, Zhang X, Li W, Ma Z, Xu L, Huang X, Chen K. Photoluminescence characteristics from amorphous SiC thin films with various structures deposited at low temperature. Solid State Communications , 2005, 133(9): 565-568
doi: 10.1016/j.ssc.2004.12.036
11 Wang L, Xu J, Ma T, Li W, Huang X, Chen K. The influence of the growth conditions on the structural and optical properties of hydrogenated amorphous silicon carbide thin films. Journal of Alloys and Compounds , 1999, 290(1-2): 273-278
doi: 10.1016/S0925-8388(99)00206-6
12 Harrison W A. Coulomb interactions in semiconductors and insulators. Physical Review B: Condensed Matter and Materials Physics , 1985, 31(4): 2121-2132
doi: 10.1103/PhysRevB.31.2121 pmid:9936018
13 Song C, Chen G R, Xu J, Wang T, Sun H C, Liu Y, Li W, Ma Z Y, Xu L, Huang X F, Chen K J. Evaluation of microstructures and carrier transport behaviors during the transition process from amorphous to nanocrystalline silicon thin films. Journal of Applied Physics , 2009, 105(5): 054901-054905
doi: 10.1063/1.3087500
14 Zi J, Buscher H, Falter C, Ludwig W, Zhang K, Xie X. Raman shifts in Si nanocrystals. Applied Physics Letters , 1996, 69(2): 200-202
doi: 10.1063/1.117371
15 Myong S Y, Lim K S, Konagai M. Effect of hydrogen dilution on carrier transport in hydrogenated boron-doped nanocrystalline silicon-silicon carbide alloys. Applied Physics Letters , 2006, 88(10): 103120-103122
doi: 10.1063/1.2177641
16 Song C, Rui Y, Wang Q, Xu J, Li W, Chen K, Zuo Y, Wang Q. Structural and electronic properties of Si nanocrystals embedded in amorphous SiC matrix. Journal of Alloys and Compounds , 2011, 509(9): 3963-3966
doi: 10.1016/j.jallcom.2010.12.191
17 Rui Y J, Li S X, Xu J, Song C, Jiang X F, Li W, Chen K J, Wang Q M, Zuo Y H. Size-dependent electroluminescence from Si quantum dots embedded in amorphous SiC matrix. Journal of Applied Physics , 2011,110(6): 064322-064327
[1] Jinzhao HUANG, Minghui SHAO, Xijin XU. Transient and stable electroluminescence properties of alternating-current biased organic light-emitting diodes[J]. Front Optoelec, 2012, 5(3): 279-283.
[2] E. KASPER, M. OEHME, J. WERNER, T. AGUIROV, M. KITTLER. Direct band gap luminescence from Ge on Si pin diodes[J]. Front Optoelec, 2012, 5(3): 256-260.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed