Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2012, Vol. 5 Issue (3) : 292-297    https://doi.org/10.1007/s12200-012-0224-7
RESEARCH ARTICLE
Research on VOx uncooled infrared bolometer based on porous silicon
Bin WANG1,2, Jianjun LAI1,2(), Erjing ZHAO1, Haoming HU1, Sihai CHEN1,2
1. School of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; 2. Wuhan National Laboratory for Optoelectronics, Wuhan 430074, China
 Download: PDF(418 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, vanadium oxide thin film of TCR of -3.5%/K has been deposited by pulsed DC magnetron sputtering method. The property of this VOx has been investigated by X-ray diffractometer (XRD) and atomic force microscopy (AFM) in detail. XRD test indicates that this film is composed of V2O3, V3O5 and VO2.VOx microbolometer with infrared (IR) absorbing structure is fabricated based on porous silicon sacrificial layer technology. Optimized micro-bridge structure is designed and carried out to decrease thermal conductance and this structure shows good compatibility with micromachining technology. This kind of bolometer with 74% IR absorption of 8–14 μm, has maximum detectivity of 1.09×109 cm·Hz1/2/W at 24 Hz frequency and 9.8 μA bias current.

Keywords infrared (IR)      porous silicon      microbolometer      micromachining     
Corresponding Author(s): LAI Jianjun,Email:jjlai@mail.hust.edu.cn   
Issue Date: 05 September 2012
 Cite this article:   
Bin WANG,Jianjun LAI,Erjing ZHAO, et al. Research on VOx uncooled infrared bolometer based on porous silicon[J]. Front Optoelec, 2012, 5(3): 292-297.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-012-0224-7
https://academic.hep.com.cn/foe/EN/Y2012/V5/I3/292
Fig.1  In() dependence on temperature for VO thin film
Fig.2  XRD pattern of vanadium oxide
Fig.3  AFM micrographs of vanadium oxide
Fig.4  Curves of corrosion rate of HF solution versus current density
Fig.5  Curves of depth of porous silicon versus anodizing time
Fig.6  Porous Si contour profile as sacrificial layer after dissolved
Fig.7  Process flow of microbolometer based on porous silicon sacrificial layer. (a) Preparation of porous silicon layer; (b) deposition of supporting layer; (c) deposition and etching of VO; (d) deposition of conduction layer; (e) PECVD films and deposition of TiN absorbing layer; (f) etching of absorbing structure; (g) removal of porous silicon sacrificial layer
Fig.8  Microphotography of microbolometer
Fig.9  Total absorption for microbolometer
Fig.10  Test system for VO bolometer
Fig.11  Curve of responsivity () depended on frequency
Fig.12  Curves of detectivity ()and noise voltage versus frequency
1 Gu X, Karunasiri G, Chen G, Sridhar U, Xu B. Determination of thermal parameters of microbolometers using a single electrical measurement. Applied Physics Letters , 1998, 72(15): 1881–1883
doi: 10.1063/1.121214
2 Niklaus F Vieider C, Jakobsen H. MEMS-based uncooled infrared bolometer arrays– a review. Proc SPIE , 2007, 6836, 68360D1–6836D15
3 Mottin E, Martin J L, Ouvrier-Buffet J L, Vilain M, Bain A, Yon J J, Tissot J L, Chatard J P. Enhanced amorphous silicon technology for 320×240 microbolometer arrays with a pitch of 35 μm. Proc eedings of SPIE , 2001, 4369: 250–256
4 Kosasayama Y, Sugino T, Nakaki Y, Fujii Y, Inoue H, Yagi H, Hata H, Ueno M, Takeda M, Kimata M. Pixel scaling for SOI-diode uncooled infrared focal plane arrays. Proc eedings of SPIE , 2004, 5406: 504–511
5 Wallner J Z, Bergstrom P L. A porous silicon based particle filter for microsystems. Physica Status Solidi (a) , 2007, 204(5): 1469–1473
doi: 10.1002/pssa.200674387
6 Tsamis C, Tserepi A, Nassiopoulou A G. Fabrication of suspended porous silicon micro-hotplates for thermal sensor applications. Physica Status Solidi (a) , 2003, 197(2): 539–543
doi: 10.1002/pssa.200306560
7 Lysenko V, Perichon S, Remaki B, Barbier D. Thermal isolation in microsystems with porous silicon. Sensors and Actuators A: Physical , 2002, 99(1–2): 13–24
doi: 10.1016/S0924-4247(01)00881-0
8 Steiner P, Richter A, Lang W. Using porous silicon as a sacrificial layer. Journal of Micromechanics and Microengineering , 1993, 3(1): 32–36
doi: 10.1088/0960-1317/3/1/007
9 Searson P C. Porous silicon membranes. Applied Physics Letters , 1991, 59(7): 832–833
10 Kishino K, Unlu M S, Chyi J I, Reed J, Arsenault L, Morkoc H. Resonant cavity enhanced photodetectors. IEEE J ournal of Quantum Electron , 1991, 27(8): 2025–2034
11 Wang H C, Yi X J, Huang G, Xiao J, Li X W, Chen S H. IR microbolometer with self-supporting structure operating. Infrared Physics & Technology , 2004, 45(1): 53–57
[1] Shaosheng DAI, Dezhou ZHANG, Junjie CUI, Xiaoxiao ZHANG, Jinsong LIU. Edge preserving super-resolution infrared image reconstruction based on L1- and L2-norms[J]. Front. Optoelectron., 2017, 10(2): 189-194.
[2] ZUO Tiechuan, QI Heng, YAO Liying, CHEN Tao. Miniaturized continuous-flow polymerase chain reaction microfluidic chip system[J]. Front. Optoelectron., 2008, 1(1-2): 39-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed