Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2014, Vol. 7 Issue (4) : 409-424    https://doi.org/10.1007/s12200-014-0413-7
REVIEW ARTICLE
Overview of Blu-Ray DiscTM recordable/rewritable media technology
Naoyasu MIYAGAWA()
AVC Networks Company, Panasonic Corporation, Kadoma, Osaka 5718501, Japan
 Download: PDF(2047 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper gives an overview of the research and development progress on Blu-Ray DiscTM (BD) rewritable/recordable media for more than 20 years. The writable BD media had been developed for consumer use like video-recording/personal computer (PC) buck-up and professional use like broadcasting with increasing storage capacity and data rate. The key technology in each innovation was explained according to referenced papers.

Keywords Blu-Ray DiscTM (BD)      optical disc      rewritable      recordable      write once     
Corresponding Author(s): Naoyasu MIYAGAWA   
Online First Date: 11 August 2014    Issue Date: 12 December 2014
 Cite this article:   
Naoyasu MIYAGAWA. Overview of Blu-Ray DiscTM recordable/rewritable media technology[J]. Front. Optoelectron., 2014, 7(4): 409-424.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-014-0413-7
https://academic.hep.com.cn/foe/EN/Y2014/V7/I4/409
capacity recording speed rewritable recordable
single layer 25 GB1X–2X 25 GB1X–6X
dual layer 50 GB1X–2X 50 GB1X–6X
triple layer 100 GB1X–2X 100 GB2X–4X
quadruple layer 128 GB2X–4X
Tab.1  Types of commercialized BD media
Fig.1  Comparison on main parameters of CD/DVD/BD
Fig.2  Disc operating system using blue laser [1]. A-O modulator: acoustic-optical (A-O) modulator; PBS: polarized beam splitter; MO signal: magneto-optical signal; RF detector: radio frequency detedtor; BS: beam splitter; NA: numerical aperture
Fig.3  Domain patterns with 0.3-mm-length recorded at the optimum recording condition observed by polarization microscope [1]
Fig.4  Solid immersion lens with refractive index of 1.5 to match the refractive index of the storage disk [3]. CCD: charge coupled device; SIL: solid emersion lens
Fig.5  Conceptual configuration of the two-element objective lens, which incorporates a mechanism for controlling the distance between two lenses [4]. Copyright 1997, The Japan Society of Applied Physics
parameter value
wavelength 680 nm
NA 0.8
focal length 2.47 mm
working distance 75 μm
disk substrate 0.1 mm
distance between two lenses 0.946 mm
lens 1 radius 1.25 mm
thickness 1.40 mm
index n 1.514
lens 2 NA 0.45
Tab.2  Specifications of the two-element lens [4]. Copyright 1997, The Japan Society of Applied Physics
Fig.6  Thickness deviation from average thickness of (a) a spin-coated UV-curable resin and (b) a bonded 0.1-mm-thick polycarbonate sheet after spin-coating. Contour levels of (a) 0.25 μm and (b) 0.5 μm. Disc coordinates in [mm] [5]. Copyright 2000, The Japan Society of Applied Physics
Fig.7  Cross-sectional view of a six-layered phase-change disk [6]. Copyright 2000, The Japan Society of Applied Physics
Fig.8  Over cyclability at 27 Mbps of data transfer rate [6]. Copyright 2000, The Japan Society of Applied Physics
Fig.9  Cross sectional view of the sample disk for red laser recording [7]. Copyright 1999, The Japan Society of Applied Physics
Fig.10  Dependences of CNR on write peak power for the dual-layer disk [7]. Copyright 1999, The Japan Society of Applied Physics
Fig.11  Cross sectional view of the sample disk for blue laser recording [8]. Copyright 2001, The Japan Society of Applied Physics
Fig.12  Stuck structure and optical design of the double-decker-disc. Rc: reflectivity of crystalline region; Ra: reflectivity of amorphous region; Tc: transmittance of crystalline region; Ta: transmittance of amorphous region [9]
Fig.13  Cross sectional view of the experimental disk for the BD system [10]. Copyright 2002, The Japan Society of Applied Physics
Fig.14  Dependences of transmission on film thickness for (a) Ge7SnSb2Te11 film and (b) (Sn0.75Te0.25)95Ge5 film [10]. Copyright 2002, The Japan Society of Applied Physics
Fig.15  Disc structure [12]. Copyright 2001, The Japan Society of Applied Physics
Fig.16  Direct-overwrite performance on both land and groove at 70 Mbps data recording rate and track pitch of 0.3 μm [12]. Copyright 2001, The Japan Society of Applied Physics
Fig.17  Cross section of super rapid cooling disc [13]. Copyright 2002, The Japan Society of Applied Physics
Fig.18  Write strategy for 7T signal at 140 Mbps [13]. Copyright 2002, The Japan Society of Applied Physics
Fig.19  Cross-sectional view of the 2X-speed dual-layer disc [14]
Fig.20  Dependences of jitter values on write peak power. LEQ: limit equalizer [14]
Fig.21  Cross section of the developed write-once disc [15]. Copyright 2003, The Japan Society of Applied Physics
Fig.22  Dependences of the jitter on the recording power using new write strategy [15]. Copyright 2003, The Japan Society of Applied Physics
Fig.23  Cross-sectional view of the experimental disk [16]. Copyright 2003, The Japan Society of Applied Physics
Fig.24  Characteristics of dependences of limit equalizer jitter at 36 and 72 Mbps data recording rate [16]. Copyright 2003, The Japan Society of Applied Physics
Fig.25  Cross sectional view of the dual-layer write-once medium [17]. Copyright 2003, SPIE
Fig.26  Dependences of CNRs on write peak power at BD 1X, 2X and 4X speeds (1X speed corresponds to 36Mbps) [17]. (a) Rear-type layer; (b) front-type layer. Copyright 2003, SPIE
Fig.27  Cross-sectional view of the medium [18]. Copyright 2006, The Japan Society of Applied Physics
Fig.28  Configuration of the L-shape write strategy. Pw: write power; Ps: space power. [18]. Copyright 2006, The Japan Society of Applied Physics
Fig.29  Schematic block diagram of the tester. EQ: equalizer;ADC: analog-to-digital convertor; PLL: phased lock loop; MUX: multiplexer; PRML: partial response maximum likelihood [19]. Copyright 2006, The Japan Society of Applied Physics
Fig.30  Limit equalizer jitter at 1X speed reading as a function of write speed. LEQ: limit equalizer; LDD: laser diode driver [19]. Copyright 2006, The Japan Society of Applied Physics
Fig.31  Disc structure [20]. Copyright 2003, The Japan Society of Applied Physics
Fig.32  Changes in jitter values with cycle of rubbing by steel wool [20]. Copyright 2003, The Japan Society of Applied Physics
Fig.33  Structure of the quadruple layer write-once disc [21]. Copyright 2001, SPIE
Fig.34  Dependences of CNR on write peak power [21]. Copyright 2001, SPIE
Fig.35  Cross section view of the quadruple recording layers disc [22]. Copyright 2003, SPIE
layer reflectivity/% jitter/%
layer 0 5.6 9.7
layer 1 5.2 9.5
layer 2 5.9 8.3
layer 3 5.0 9.6
Tab.3  Reflectivity and jitter value of each layer [22]. Copyright 2003, SPIE
Fig.36  Quadruple-layer disc structure. t10: spacer layer between layer 0 and layer 1; t21: spacer layer between layer 1 and layer 2; t32: spacer layer between layer 2 and layer 3 [23]. Copyright 2006, SPIE
Fig.37  Readout tilt tolerances of radial directions in 133 GB-equivalent recording, measured on each layer of a quadruple-layer BD-R [23]. Copyright 2006, SPIE
Fig.38  Cross-sectional view of the developed triple-layer disk [24]. Copyright 2011, The Japan Society of Applied Physics
Fig.39  Dependences of SER on write power for each layer. Random signals including various marks and spaces from 2T to 8T were overwritten in 10 cycles [24]. Copyright 2011, The Japan Society of Applied Physics
Fig.40  Cross-sectional view of triple-layer rewritable disc [26]. Copyright 2010, The Japan Society of Applied Physics
Fig.41  Dependence of SER on normalized write power [26]. Copyright 2010, The Japan Society of Applied Physics
1 Hashimoto S, Maesaka A, Ochiai Y. Recording on Co/Pt magneto-optical disks using a 488 nm wavelength laser. Journal of Applied Physics, 1991, 70(9): 5133–5135
https://doi.org/10.1063/1.348988
2 Mizuno O, Yoshida K, Characteristics of high density recording on phase change optical disc using short wavelength light source (488 nm). Technical Digest of Optical Memory Symposium 1992. 1992, 55–56 (in Japanese)
3 Mansfield S M, Studenmund W R, Kino G S, Osato K. High-numerical-aperture lens system for an optical storage head. Optics Letters, 1993, 18(4): 305–307
https://doi.org/10.1364/OL.18.000305 pmid: 19802118
4 Yamamoto K, Osato K, Ichimura I, Maeda F, Watanabe T. 0.8-numerical-aperture two-element objective lens for the optical disk. Japanese Journal of Applied Physics, 1997, 36(Part 1, No. 1B 1B): 456–459
https://doi.org/10.1143/JJAP.36.456
5 Decré M M J, Vromans P H G M. Cover layer technology for the high-numerical-aperture digital video recording system. Japanese Journal of Applied Physics, 2000, 39(Part 1, No. 2B): 775–778
https://doi.org/10.1143/JJAP.39.775
6 Ichimura I, Maeda F, Osato K, Yamamoto K, Kasami Y. Optical disk recording using a GaN blue-violet laser diode. Japanese Journal of Applied Physics, 2000, 39(Part 1, No. 2B): 937–942(Presented in ISOM/ODS1999)
https://doi.org/10.1143/JJAP.39.937
7 Nagata K, Yamada N, Nishiuchi K, Furukawa S, Akahira N. Rewritable dual-layer phase-change optical disk. Japanese Journal of Applied Physics, 1999, 38(Part 1, No. 3B): 1679–1686 (Presented in ISOM1998)
https://doi.org/10.1143/JJAP.38.1679
8 Akiyama T, Uno M, Kitaura H, Narumi K, Kojima R, Nishiuchi K, Yamada N. Rewritable dual-layer phase-change optical disk utilizing a blue-violet laser. Japanese Journal of Applied Physics, 2001, 40(Part 1, No. 3B): 1598–1603 (Presented in ISOM2000)
https://doi.org/10.1143/JJAP.40.1598
9 kurokawa K, Yamasaki T, Yukumoto T, Nakao T, Mano K, Yasuda K, Takagawa S, Nakamura M. 41.8-GB double-decker phase change disc. Topical Meeting of Optical Data Storage, 2001, 28–29
10 Narumi K, Akiyama T, Miyagawa N, Nishihara T, Kitaura H, Kojima R, Nishiuchi K, Yamada N. Rewritable dual-layer phase-change optical disk with a balanced transmittance structure. Japanese Journal of Applied Physics, 2002, 41(Part 1, No. 5A): 2925–2930 (Presented in ISOM2001)
https://doi.org/10.1143/JJAP.41.2925
11 Hayashi K, Hisada K, Ohno E. New replication process using function-assigned resins for dual-layered disc with 0.1 mm thick cover layer. Technical Digest of ISOM 2001. 2001, 312–313.12
12 Inoue H, Hirata H, Kato T, Shingai H, Utsunomiya H. Phase change disc for high data rate recording. Japanese Journal of Applied Physics, 2001, 40(Part 1, No. 3B): 1641–1642 (Presented in ISOM2000)
https://doi.org/10.1143/JJAP.40.1641
13 Kato T, Hirata H, Komaki T, Inoue H, Shingai H, Hayashida N, Utsunomiya H. The phase change optical disc with the data recording rate of 140 Mbps. Japanese Journal of Applied Physics, 2002, 41(Part 1, No. 3B): 1664–1667 (Presented in ISOM2001)
https://doi.org/10.1143/JJAP.41.1664
14 Nishihara T, Kitaura H, Kojima R, Miyagawa N, Akiyama T, Nishiuchi K, Yamada N. Rewritable 2X-speed dual-layer Blu-ray Disc. Technical Digest of ISOM 2003. 2003, 58–59
15 Inoue H, Mishima K, Aoshima M, Hirata H, Kato T, Utsunomiya H. Inorganic write-once disc for high speed recording. Japanese Journal of Applied Physics, 2003, 42(Part 1, No. 2B): 1059–1061 (Presented in ISOM/ODS2002)
https://doi.org/10.1143/JJAP.42.1059
16 Hosoda Y, Izumi T, Mitsumori A, Yokogawa F, Jinno S, Kudo H. Inorganic recordable disk with more eco-friendly material for blue. Japanese Journal of Applied Physics, 2003, 42(Part 1, No. 2B): 1040–1041
https://doi.org/10.1143/JJAP.42.1040
17 Uno M, Akiyama T, Kitaura H, Kojima R, Nishiuchi K, Yamad N. Dual-layer write-once media for 1X-4X speed recording based on Blu-ray Disc format. Proceedings of the Society for Photo-Instrumentation Engineers, 2003, 5069: 82–89
https://doi.org/10.1117/12.532520
18 Furumiya S, Takahashi K, Kitaura H, Miyagawa N, Yamada N. Over-500-Mbps data recording on write-once media with L-shaped write strategy. Japanese Journal of Applied Physics, 2006, 45(2B): 1223–1225 (Presented in ISOM/ODS2005)
https://doi.org/10.1143/JJAP.45.1223
19 Minemura H, Watanabe K, Adachi K, Tamura R. High-speed write/read techniques for Blu-ray write-once discs. Japanese Journal of Applied Physics, 2006, 45(2B): 1213–1218
https://doi.org/10.1143/JJAP.45.1213
20 Hayashida N, Hirata H, Komaki T, Usami M, Ushida T, Itoh H, Yoneyama K, Utsunomiya H. High-performance hard coat for cartridge-free Blu-ray Disc. Japanese Journal of Applied Physics, 2003, 42(Part 1, No. 2B): 750–753
https://doi.org/10.1143/JJAP.42.750
21 Kitaura H, Hisada K, Narumi K, Nishiuchi K, Yamada N. Multilayer write-once media with Te-O-Pd films utilizing violet laser. Proceedings of the Society for Photo-Instrumentation Engineers, 2002, 4342: 340–347
https://doi.org/10.1117/12.453382
22 Mishima K, Inoue H, Aoshima M, Komaki T, Hirata H, Utsunomiya H. Inorganic write-once disc with quadruple recording layers for Blu-ray Disc system. Proceedings of the Society for Photo-Instrumentation Engineers, 2003, 5069: 90–97
https://doi.org/10.1117/12.532524
23 Ichimura I, Maruyama T, Shiraishi J, Osato K. High-density multilayer optical disc storage. Proceedings of the Society for Photo-Instrumentation Engineers, 2006, 6282: 185–187
24 Nishihara T, Tsuchino A, Tomekawa Y, Kusada H, Kojima R, Yamada N. Rewritable triple-layer phase-change optical disk providing 100 Gbyte capacity. Japanese Journal of Applied Physics, 2011, 50(6R): 062503
https://doi.org/10.7567/JJAP.50.062503
25 Nakamura A, Kobayashi I, Narumi K, Takaoka T, Furumiya S, Miyagawa N. 33.4 Gbyte/layer recording with adaptive write strategy for 100 Gbyte rewritable triple-layer disc. Japanese Journal of Applied Physics, 2010, 49(8): 08KG01
https://doi.org/10.1143/JJAP.49.08KG01
26 Shingai H, Kato T, Kosuda M, Takagi Y, Oyake H, Hirata H. Triple-layer rewritable disc with Sb-based phase-change material. Japanese Journal of Applied Physics, 2010, 49(8): 08KG02
https://doi.org/10.1143/JJAP.49.08KG02
27 Lee K, Zhao H, Hwang I, Hwang W, Park H, Chung C, Park I. Approach to high density more than 40 GB per layer with Blu-ray Disc format. Proceedings of the Society for Photo-Instrumentation Engineers, 2007, 6620(66200V): 66200V-7
https://doi.org/10.1117/12.738914
28 Ishihara H, Nakamura Y, Hoshizawa T. Inter-track crosstalk canceling PRML decoder for high density optical disc. Technical Digest of ISOM/ODS 2011, 2011, OTuC3
29 Takahashi K, Miyawaki M, Kosaka H, Miki T, Nakano J, Shiraishi J. A record high area density based on the BD optical parameters. Technical Digest of International Symposium on Optical Memory (ISOM) 2011. 2011, OWC4
30 Mikami T, Mochizuki H, Sasaki T, Kitahara T, Tsuyama H, Inoue K, Ito M. Twenty-layer optical disc fabricated by Web coating and lamination. Japanese Journal of Applied Physics, 2013, 52(9S2): 09LC01
https://doi.org/10.7567/JJAP.52.09LC01
[1] Xiaodi TAN,Xiao LIN,An’an WU,Jingliang ZANG. High density collinear holographic data storage system[J]. Front. Optoelectron., 2014, 7(4): 443-449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed