Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2014, Vol. 7 Issue (4) : 425-436    https://doi.org/10.1007/s12200-014-0416-4
RESEARCH ARTICLE
Optical design in high density and high capacity multi-layer data storage system
Yuzuru TAKASHIMA()
College of Optical Sciences, University of Arizona, Tucson, AZ 85721, USA
 Download: PDF(1188 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Fundamental requirements for optical system design for volume recording system is identified. Anastigmatic objective lens design is required for conventional page-based system, whereas for multi-layer volume recording systems, an Aplanatic and zoom optical design is needed with an afocal sub-optical system including a high numerical aperture (NA) objective element. An NA 0.4 and four element design is feasible by only using off-the-shelf components. Recording depth ranges of 0.4 mm for wavelength 532 nm and 0.2 mm for 405 nm. The design demonstrates sufficiently small as-built wavefront error, less than 0.1 waves while implementing focusing and tracking capabilities to the design.

Keywords holographic and volume memories      lens system design      optical disks     
Corresponding Author(s): Yuzuru TAKASHIMA   
Just Accepted Date: 18 September 2014   Online First Date: 17 November 2014    Issue Date: 12 December 2014
 Cite this article:   
Yuzuru TAKASHIMA. Optical design in high density and high capacity multi-layer data storage system[J]. Front. Optoelectron., 2014, 7(4): 425-436.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-014-0416-4
https://academic.hep.com.cn/foe/EN/Y2014/V7/I4/425
Fig.1  (a) Schematic of volume holographic recording with interchangeable media; (b) in the lens system, two kinds of imaging are involved, the object imaging (solid line) and the pupil imaging (dashed line). SLM: spatial light modulator; CCD: charge coupled device
lens aberrations object imaging pupil imaging
spherical aberration corrected corrected
Coma corrected (no Coma if 5 aberrations are corrected.)
astigmatism corrected NA
Petzval corrected
distortion NA (symmetry) NA (small field of view)
Tab.1  Relations between object and pupil aberrations
Fig.2  Design example of Anastigmatic lens for volume holographic recording using for (a) NA=0.7 (N=1.59219); (b) NA=0.75 (N=1.85078) and (c) NA=0.8 (N=2.15858). A strong negative surface close to the Fourier plane improves object imaging 2.2. Saggital (S) and tangential (T) field aberration are plotted for each of the design
Fig.3  Schematic of 1st order power arrangement of objective zoom lens for multi-layer recording. WD: working distance
Fig.4  Power arrangement of conventional variable focus depth objectives
Fig.5  Powerful arrangement of variable focus depth objectives with a constant focal length
Fig.6  Power arrangement of the three elements zoom objective design
Fig.7  Power arrangement of the three elements zoom objective with afocal design
Fig.8  Power arrangement of the variable focusing depth system having a constant focal length
Fig.9  Schematic diagram of multi-layer micro holographic data storage
Fig.10  Schematic diagram of multi-layer holographic recording demonstration platform. (a) Disc structure; (b) recording system. LD: laser diode; QD: quad detector; PBS: polarization beam splitter; EOM: electro optics modulator; DPSS: diode pumped solid state laser; QWP: quarter wave plate; HWP: half wave plate
Fig.11  Design results, writing and readout optics for 532 nm wavelength
Fig.12  Design results, tracking and focusing optics for 658 nm wavelength
recording depth/mm EFL (effective focal length) BFL (back focal length) FFL (front focal length) NA (numerical aperture) wave aberration (waves)
0.7 6.811 0.0005 -43.7489 0.4 0.0048
0.8 6.8157 0.0012 -36.0226 0.4 0.0077
0.9 6.8204 0.0016 -28.2747 0.4 0.0134
1.0 6.8252 0.0018 -20.5027 0.4 0.0166
1.1 6.8299 0.0016 -12.7032 0.4 0.0166
Tab.2  
recording depth /mm EFL (effective focal length) BFL (back focal length) FFL (front focal length) FNO (F number) wave aberration (waves)
0.7 6.8298 0.0002 -33.3701 0.4 0.0061
0.8 6.8476 0.002 -36.9458 0.4 0.0223
0.9 6.8652 0.0033 -40.4747 0.4 0.0332
1.0 6.8828 0.0041 -43.9589 0.4 0.039
1.1 6.9002 0.0044 -47.4002 0.4 0.0403
Tab.3  Paraxial data of the reference path system for 532 nm
specifications results
1 disc type t = 0.6 mm+0.6 mm
2 wavelength/nm recording 532
3 focusing/tracking 658
NA (numerical aperture) recording 0.4 0.4
focusing/tracking 0.45 0.45
4 recording depth/mm 0.7–1.1 (range of the depth: 0.4) 0.7–1.1
5 focusing/tracking depth/mm 0.6 0.6
6 wavefront error 532 nm 0.1 waves in RMS as built, object height<0.03 mm 0.1
658 nm 0.1 waves in RMS as built, object height<0.03 mm 0.1
7 other requirements off-the-shelf lenses
Tab.4  Summary of design specifications and results
Fig.13  Result of tolerance analysis. As built performance as a function of recording depth for objective (arm 1) and reference (arm 2) optical path
specifications results
1 disc type blue sensitive t = 0.6 mm disc/t = 0.2 mm recordable disc/t = 0.6 mm disc
2 wavelength/nm recording 405
focusing/tracking 658
3 NA (numerical aperture) recording 0.4
focusing/tracking 0.45
4 recording depth/mm) 0.6-0.8 (range of the depth: 0.2)
(405 nm)
5 focusing/tracking depth/mm 0.6 mm
(658 nm)
6 wavefront error 405 nm 0.1 waves in RMS, object height<0.03 mm
658 nm 0.1 waves in RMS, object height<0.03 mm
7 other requirements off-the-shelf lenses
Tab.5  Design specifications and design results for 405 nm wavelength
Fig.14  Design results, writing and readout optics for 405 nm wavelength
1 Ashton K. That ‘internet of things’ thing: in the real world things matter more than ideas. RFID Journal, 2009, 22: 97–114
2 McLeod R R, Daiber A J, McDonald M E, Robertson T L, Slagle T, Sochava S L, Hesselink L. Microholographic multilayer optical disk data storage. Applied Optics, 2005, 44(16): 3197–3207
https://doi.org/10.1364/AO.44.003197 pmid: 15943253
3 Takashima Y, Hesselink L. Design and tolerance of numerical aperture? 0.8 objective lenses for page-based holographic data storage systems. Japanese Journal of Applied Physics, 2009, 48(3S1): 03A004
4 Neifeld M A, McDonald M. Lens-design issues affecting parallel readout of optical disks. Applied Optics, 1995, 34(23): 5167–5174
https://doi.org/10.1364/AO.34.005167 pmid: 21052363
5 Neifeld M A, McDonald M. Lens design issues impacting page access to volume optical media. Optics Communications, 1995, 120(1–2): 8–14
https://doi.org/10.1016/0030-4018(95)00361-B
6 Zeng J Y, Wang M Q, Yan Y B, He Q S, Jin G F. Design of a short-focal-length double-Fourier-transform-lens system for holographic storage. Optical Engineering (Redondo Beach, Calif.), 2007, 46(3): 033002-1–033002-7
https://doi.org/10.1117/1.2714541
7 Kubota S. Aplanatic condition required to reproduce jitter-free signals in an optical digital disk system. Applied Optics, 1987, 26(18): 3961–3973
https://doi.org/10.1364/AO.26.003961 pmid: 20490170
8 Stallinga S. Compact description of substrate-related aberrations in high numerical-aperture optical disk readout. Applied Optics, 2005, 44(6): 849–858
https://doi.org/10.1364/AO.44.000849 pmid: 15751673
9 Barbastathis G, Psaltis D. Volume Holographic Multiplexing Methods. In: Coufal H J, Psaltis D, Sincerbox G T, eds. Holographic Data Storage. Springer Berlin Heidelberg: Springer, 2000, 21–62
10 von Bieren K. Lens design for optical fourier transform systems. Applied Optics, 1971, 10(12): 2739–2742
https://doi.org/10.1364/AO.10.002739 pmid: 20111423
11 Orlov S S, Phillips W, Bjornson E, Takashima Y, Sundaram P, Hesselink L, Okas R, Kwan D, Snyder R. High-transfer-rate high-capacity holographic disk data-storage system. Applied Optics, 2004, 43(25): 4902–4914
https://doi.org/10.1364/AO.43.004902 pmid: 15449477
12 Wynne C G. Primary aberrations and conjugate change. Proceedings of the Physical Society, 1952, 65(6): 429–437
https://doi.org/10.1088/0370-1301/65/6/306
13 Matsui Y, Nariai K. Fundamentals of Practical Aberration Theory: Fundamental Knowledge and Techniques for Optical Designers. New Jersey: World Scientific, 1993
14 Milster T D, Upton R S, Luo H. Objective lens design for multiple-layer optical data storage. Optical Engineering (Redondo Beach, Calif.), 1999, 38(2): 295–301
https://doi.org/10.1117/1.602088
15 Eichler H J, Kuemmel P, Orlic S, Wappelt A. High-density disk storage by multiplexed microholograms. IEEE Journal on Selected Topics in Quantum Electronics, 1998, 4(5): 840–848
https://doi.org/10.1109/2944.735770
16 Shi X, Ostroverkhov V, Lawrence B, Boden E, Ren Z, Takashima Y, Ross F. Micro-holographic data storage: materials and systems. Review of Laser Engineering, 2010, 38: 349–355
[1] Jun CHANG,Guijuan XIE,Lifei ZHANG,Yao XU,Jide ZHOU,Shengyi YANG. Design of four mirror inverted telephoto zoom system[J]. Front. Optoelectron., 2016, 9(4): 599-608.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed