Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2014, Vol. 7 Issue (4) : 450-466    https://doi.org/10.1007/s12200-014-0458-7
REVIEW ARTICLE
Recent advances in holographic data storage
Hao RUAN*()
Research Laboratory for High Density Optical Storage, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
 Download: PDF(1132 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Nowadays, big-data centers still rely on hard drives. However, there is strong evidence that these surface-storage technologies are approaching fundamental limits that may be difficult to overcome, as ever-smaller bits become less thermally stable and harder to access. An intriguing approach for next generation data-storage is to use light to store information throughout the three-dimensional (3D) volume of a material. Holographic data storage (HDS) is poised to change the way we write and retrieve data forever. After many years of developing appropriate recording media and optical read–write architectures, this promising technology is now moving industriously to the market. In this paper, a review of the major achievements of HDS in the past ten years is presented and the key technique details are discussed. The author concludes that HDS technology is an attractive candidate for big data centers in the future. On the other hand, there are many challenges ahead for HDS technology to overcome in the years to come.

Keywords holographic data storage (HDS)      microholography      photopolymer      channel code      signal detection      big data center     
Corresponding Author(s): Hao RUAN   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Just Accepted Date: 30 October 2014   Online First Date: 24 November 2014    Issue Date: 12 December 2014
 Cite this article:   
Hao RUAN. Recent advances in holographic data storage[J]. Front. Optoelectron., 2014, 7(4): 450-466.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-014-0458-7
https://academic.hep.com.cn/foe/EN/Y2014/V7/I4/450
Fig.1  How to record and read data using holograms: (a) holographic storage of a single data bit; (b) read out of the hologram (After Ref. [4])
Fig.2  Digital holographic data storage (HDS) scheme (After Refs. [4,10,11])
Fig.3  Representative optical architectures for holographic data storage (HDS) system. SLM: spatial light modulator
Fig.4  Illustration of the packing density increase by using (b) polytopic multiplexing over (a) traditional angle multiplexing (After Refs. [12,13])
Fig.5  Grating formation in photopolymer (After Ref. [62]). (a) Sinusoidal illuminating intensity distribution at the plate; (b) photopolymer layer before recording; (c) photopolymer layer during recording
Fig.6  Writing mechanism of two-chemistry approach
Fig.7  Overview of holographic data storage (HDS) data channel
Fig.8  Simulated data pixel image neighborhood (real part of complex amplitude) (After Ref. [93])
1 H Ruan, C Y Bu. Multilayer optical storage for big data center: by pre-layered scheme. In: Proceedings of the Society for Photo-Instrumentation Engineers, 2013, 8913: 891308
https://doi.org/10.1117/12.2032302
2 Gartner Inc. 2013,
3 M Poess, R O Nambiar. Energy cost, the key challenge of today’s data centers: a power consumption analysis of TPC-C results. In: Proceedings of the VLDB Endowment, 2008, 1(2): 1229–1240
https://doi.org/10.14778/1454159.1454162
4 G W Burr. Three-dimensional optical storage. In: Proceedings of the Society for Photo-Instrumentation Engineers, 2003, 5225: 78
https://doi.org/10.1117/12.510403
5 P J van Heerden. Theory of optical information storage in solids. Applied Optics, 1963, 2(4): 393–400
https://doi.org/10.1364/AO.2.000393
6 L K Anderson. Holographic optical memory for bulk data storage. Bell Laboratories Record, 1968, 45(10): 319–326
7 D L Staebler, W J Burke, W Phillips, J J Amodei. Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3. Applied Physics Letters, 1975, 26(4): 182–184
https://doi.org/10.1063/1.88108
8 Y Tsunoda, K Tatsuno, K Kataoka, Y Takeda. Holographic video disk: an alternative approach to optical video disks. Applied Optics, 1976, 15(6): 1398–1403
https://doi.org/10.1364/AO.15.001398 pmid: 20165197
9 K Kubota, Y Ono, M Kondo, S Sugama, N Nishida, M Sakaguchi. Holographic disk with high data transfer rate: its application to an audio response memory. Applied Optics, 1980, 19(6): 944–951
https://doi.org/10.1364/AO.19.000944 pmid: 20220963
10 J F Heanue, M C Bashaw, L Hesselink. Volume holographic storage and retrieval of digital data. Science, 1994, 265(5173): 749–752
https://doi.org/10.1126/science.265.5173.749 pmid: 17736271
11 H J Coufal, D Psaltis, G Sincerbox. Holographic Data Storage. New York: Springer-Verlag, 2000
12 K Curtis, L Dhar, A Hill, W Wilson, M Ayres. Holographic Data Storage: From Theory to Practical Systems. Chichester, UK: John Wiley & Sons Ltd, 2011
13 K Anderson, K Curtis. Polytopic multiplexing. Optics Letters, 2004, 29(12): 1402–1404
https://doi.org/10.1364/OL.29.001402 pmid: 15233449
14 H Horimai, X Tan. Collinear technology for a holographic versatile disk. Applied Optics, 2006, 45(5): 910–914
https://doi.org/10.1364/AO.45.000910 pmid: 16512533
15 H J Eichler, P Kuemmel, S Orlic, A Wappelt. High-density disk storage by multiplexed microholograms. IEEE Journal on Selected Topics in Quantum Electronics, 1998, 4(5): 840–848
https://doi.org/10.1109/2944.735770
16 H Yamatsu, M Ezura, N Kihara. Study on Multiplexing methods for volume holographic memory. In: Proceedings of Joint International Symposium on Optical Memories and Optical Data Storage (ISOM/ODS), 2005, ThE1
17 K Shimada, T Ide, T Shimano, K Anderson, K Curtis. New optical architecture for holographic data storage system compatible with Blu-ray Disc™ system. Optical Engineering (Redondo Beach, Calif.), 2014, 53(2): 025102
https://doi.org/10.1117/1.OE.53.2.025102
18 H Y S Li, D Psaltis. Three-dimensional holographic disks. Applied Optics, 1994, 33(17): 3764–3774
https://doi.org/10.1364/AO.33.003764 pmid: 20885769
19 K Anderson, E Fotheringham, A Hill, B Sissom, K Curtis. High-speed holographic data storage at 500 Gbits/in.2. SMPTE Motion Imaging Journal, 2006, 115(5–6): 200–203
https://doi.org/10.5594/J12231
20 A Hoskins, B Ihas, K Anderson, K Curtis. Monocular architecture. Japanese Journal of Applied Physics, 2008, 47(7): 5912–5914
https://doi.org/10.1143/JJAP.47.5912
21 K Shimada, T Ishii, T Ide, S Hughes, A Hoskins, K Curtis. High density recording using monocular architecture for 500 GB consumer system. In: Proceedings of Optical Data Storage Conference (ODS), 2009, TuC2
22 T Ishii, M Hosaka, T Hoshizawa, M Yamaguchi, S Koga, A Tanaka. Terabyte holographic recording with monocular architecture. In: Proceedings of IEEE International Conference on Consumer Electronics (ICCE), 2012, 427–428
23 S S Orlov, W Phillips, E Bjornson, Y Takashima, P Sundaram, L Hesselink, R Okas, D Kwan, R Snyder. High-transfer-rate high-capacity holographic disk data-storage system. Applied Optics, 2004, 43(25): 4902–4914
https://doi.org/10.1364/AO.43.004902 pmid: 15449477
24 K Saito, H Hormai. Holographic 3-D disk using in-line face-to-face recording. In: Proceedings of Optical Data Storage Conference (ODS), Aspen, Colorado, 1998, 162–164
25 X D Tan, H Horimai. Collinear holographic information storage technologies and system. Acta Optica Sinica, 2006, 26(6): 827–830 (in Chinese)
26 H Horimai, X D Tan. Holographic information storage system: today and future. IEEE Transactions on Magnetics, 2007, 43(2): 943–947
https://doi.org/10.1109/TMAG.2006.888528
27 T Shimura, S Ichimura, R Fujimura, K Kuroda, X Tan, H Horimai. Analysis of a collinear holographic storage system: introduction of pixel spread function. Optics Letters, 2006, 31(9): 1208–1210
https://doi.org/10.1364/OL.31.001208 pmid: 16642061
28 W Jia, Z Chen, F J Wen, C Zhou, Y T Chow, P S Chung. Coaxial holographic encoding based on pure phase modulation. Applied Optics, 2011, 50(34): H10–H15
https://doi.org/10.1364/AO.50.000H10 pmid: 22192995
29 W Jia, Z Chen, F J Wen, C Zhou, Y T Chow, P S Chung. Single-beam data encoding using a holographic angular multiplexing technique. Applied Optics, 2011, 50(34): H30–H35
https://doi.org/10.1364/AO.50.000H30 pmid: 22193021
30 T Nobukawa, T Nomura. Coaxial holographic memory with designed reference pattern on the basis of Nyquist aperture for high density recording. Japanese Journal of Applied Physics, 2013, 52(9S2): 09LD09
https://doi.org/10.7567/JJAP.52.09LD09
31 J Q Liu, L C Cao, C M Y Li, J H Li, Q S He, G F Jin. Crosstalk analysis of multilayer collinear volume holographic data storage. Proceedings of the Society for Photo-Instrumentation Engineers, 2013, 8847: 88470D
https://doi.org/10.1117/12.2026508
32 Y W Yu, C Y Chen, C C Sun. Increase of signal-to-noise ratio of a collinear holographic storage system with reference modulated by a ring lens array. Optics Letters, 2010, 35(8): 1130–1132
https://doi.org/10.1364/OL.35.001130 pmid: 20410942
33 H Horimai, X Tan, J Li. Collinear holography. Applied Optics, 2005, 44(13): 2575–2579
https://doi.org/10.1364/AO.44.002575 pmid: 15881066
34 M J O’Callaghan, J R McNeil, C Walker, M Handschy. Spatial light modulators with integrated phase masks for holographic data storage. In: Proceedings of Optical Data Storage Conference (ODS), Montreal, Canada, 2006, 23–25
35 K Ishioka, K Tanaka, N Kojima, A Fukumoto, M Sugiki. Optical collinear holographic recording system using a blue laser and a random phase mask. In: Proceedings of Joint International Symposium on Optical Memories and Optical Data Storage (ISOM/ODS), Honolulu, Hawaii, 2005, ThD3
36 X Lin, J Ke, A A Wu, X Xiao, X D Tan. An effective phase modulation in the collinear holographic storage. In: Proceedings of the Society for Photo-Instrumentation Engineers, 2014, 9006: 900607
https://doi.org/10.1117/12.2035171
37 K Tanaka, H Mori, M Hara, K Hirooka, A Fukumoto, K Watanabe. High density recording of 270 Gbit/in.2 in a coaxial holographic recording system. Japanese Journal of Applied Physics, 2008, 47(7): 5891–5894
https://doi.org/10.1143/JJAP.47.5891
38 N Tanabe, H Yamatsu, N Kihara. Experimental research on hologram number criterion for evaluating bit error rates of shift multiplexed holograms. In: Proceedings of Technical Digest of International Symposium on Optical Memories, 2004, 216–217
39 K Tanaka, M Hara, K Tokuyama, K Hirooka, Y Okamoto, H Mori, A Fukumoto, K Okada. 415 Gbit/in.2 recording in coaxial holographic storage using low-density parity-check codes. In: Proceedings of Optical Data Storage Conference, Lake Buena Vista, Florida, 2009, 64–66
40 K Kimura. Improvement of the optical signal-to-noise ratio in common-path holographic storage by use of a polarization-controlling media structure. Optics Letters, 2005, 30(8): 878–880
https://doi.org/10.1364/OL.30.000878 pmid: 15865385
41 S Orlic, J Rass, E Dietz, S Frohmann. Multilayer recording in microholographic data storage. Journal of Optics, 2012, 14(7): 072401
https://doi.org/10.1088/2040-8978/14/7/072401
42 R R McLeod, A J Daiber, M E McDonald, T L Robertson, T Slagle, S L Sochava, L Hesselink. Microholographic multilayer optical disk data storage. Applied Optics, 2005, 44(16): 3197–3207
https://doi.org/10.1364/AO.44.003197 pmid: 15943253
43 S Orlic, E Dietz, T Feid, S Frohmann, H Markoetter, J Rass. Volumetric optical storage with microholograms. In: Proceedings of Optical Data Storage Topical Meeting, Lake Buena Vista, Florida, 2009, 1–3
44 S Orlic, E Dietz, S Frohmann, J Rass. Resolution-limited optical recording in 3D. Optics Express, 2011, 19(17): 16096–16105
https://doi.org/10.1364/OE.19.016096 pmid: 21934972
45 C K Min, D H Kim, S Jeon, K S Park, Y P Park, H Yang, N C Park, J Kim. Analysis of inter-symbol-interference caused by shift misalignment of two objective lenses in high-NA micro holographic storage. Microsystem Technologies, 2010, 18(9–10): 1623–1631
46 H Mikami, K Osawa, K Watanabe. Optical phase multi-level recording in microhologram. In: Proceedings of the Society for Photo-Instrumentation Engineers, 2010, 7730: 77301D
https://doi.org/10.1117/12.866058
47 H Mikami, K Osawa, E Tatsu, K Watanabe. Experimental demonstration of optical phase multilevel recording in microhologram. Japanese Journal of Applied Physics, 2012, 51(8S2): 08JD01
https://doi.org/10.7567/JJAP.51.08JD01
48 H Mikami, K Watanabe. Microholographic optical data storage with spatial mode multiplexing. Japanese Journal of Applied Physics, 2013, 52(9S2): 09LD02
https://doi.org/10.7567/JJAP.52.09LD02
49 R Katayama. Proposal for angular momentum multiplexing in microholographic recording. Japanese Journal of Applied Physics, 2013, 52(9S2): 09LD11
https://doi.org/10.7567/JJAP.52.09LD11
50 S Orlic, E Dietz, S Frohmann, J Gortner, C Mueller. Microholographic multilayer recording at DVD density. In: Proceedings of Optical Data Storage Conference (ODS), 2007, MB4
51 T Horigome, K Saito, H Miyamoto, K Hayashi, G Fujita, H Yamatsu, N Tanabe, S Kobayashi, H Uchiyama. Recording capacity enhancement of micro-reflector recording. Japanese Journal of Applied Physics, 2008, 47(7): 5881–5884
https://doi.org/10.1143/JJAP.47.5881
52 K Saito, S Kobayashi. Analysis of micro-reflector 3-D optical disc recording. In: Proceedings of the Society for Photo-Instrumentation Engineers, 2006, 6282: 628213
https://doi.org/10.1117/12.685231
53 E P Boden, K P Chan, D V Dylov, E M Kim, P W Lorraine, P J McCloskey, M J Misner, A Natarajan, V Ostroverkhov, J E Pickett, X Shi, Y Takashima, V H Watkins. Recent progress in micro-holographic storage. In: Proceedings of Joint International Symposium on Optical Memory and Optical Data Storage (ISOM/ODS), 2011, OWA1
54 K Sutter, J Hulliger, P Günter. Photorefractive effects observed in the organic crystal 2-cyclooctylamino-5-nitropyridine doped with 7,7,8,8-tetracyanoquinodimethane. Solid State Communications, 1990, 74(8): 867–870
https://doi.org/10.1016/0038-1098(90)90952-8
55 H Bässler. Charge transport in disordered organic photoconductors a Monte Carlo simulation study. Phyical Status Solidi B, 1993, 175(1): 15–56
https://doi.org/10.1002/pssb.2221750102
56 J Eickmans, T Bieringer, S Kostromine, H Berneth, R Thoma. Photoaddressable polymers: a new class of materials for optical data storage and holographic memories. Japanese Journal of Applied Physics, 1999, 38(Part 1, No. 3B): 1835–1836
https://doi.org/10.1143/JJAP.38.1835
57 E Loerincz, F Ujhelyi, A Sueto, G Szarvas, P Koppa, G Erdei, S Hvilsted, P S Ramanujam, P I Richter. Rewritable holographic memory card system. In: Proceedings of the Society for Photo-Instrumentation Engineers, 2000, 4090: 185–190
https://doi.org/10.1117/12.399357
58 B Lawrence, V Ostroverkhov, X Shi, K Longley, E P Boden. Micro-holographic storage and threshold holographic materials. In: Proceedings of Joint International Symposium on Optical Memories and Optical Data Storage (ISOM/ODS), 2008, TD05–06
59 S Lohr. GE’s Breakthrough Can Put 100 DVDs on a Disc. The New York Times, 26. April2009
60 D H Close, A D Jacobson, J D Margerum, R G Brault, F J McClung. Hologram recording on photopolymer materials. Applied Physics Letters, 1969, 14(5): 159–160
https://doi.org/10.1063/1.1652756
61 F K Bruder, R Hagen, T Rölle, M S Weiser, T Fäcke. From the surface to volume: concepts for the next generation of optical-holographic data-storage materials. Angewandte Chemie International Edition, 2011, 50(20): 4552–4573
https://doi.org/10.1002/anie.201002085 pmid: 21538730
62 J X Guo, M R Gleeson, J T Sheridan. A review of the optimisation of photopolymer materials for holographic data storage. Physics Research International, 2012, 803439
https://doi.org/10.1155/2012/803439
63 X Li, C Bullen, J W M Chon, R A Evans, M Gu. Two-photon-induced three-dimensional optical data storage in CdS quantum-dot doped photopolymer. Applied Physics Letters, 2007, 90(16): 161116
https://doi.org/10.1063/1.2724902
64 N Suzuki, Y Tomita, T Kojima. Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films. Applied Physics Letters, 2002, 81(22): 4121–4123
https://doi.org/10.1063/1.1525391
65 T J Trentler, J E Boyd, V L Colvin. Epoxy resin photopolymer composites for volume holography. Chemistry of Materials, 2000, 12(5): 1431–1438
https://doi.org/10.1021/cm9908062
66 M R Gleeson, J T Sheridan, F K Bruder, T Rölle, H Berneth, M S Weiser, T Fäcke. Comparison of a new self developing photopolymer with AA/PVA based photopolymer utilizing the NPDD model. Optics Express, 2011, 19(27): 26325–26342
https://doi.org/10.1364/OE.19.026325 pmid: 22274217
67 M R Gleeson, D Sabol, S Liu, C E Close, J V Kelly, J T Sheridan. Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length. Journal of the Optical Society of America B: Optical Physics, 2008, 25(3): 396–406
https://doi.org/10.1364/JOSAB.25.000396
68 J Guo, M R Gleeson, S Liu, J T Sheridan. Non-local spatial frequency response of photopolymer materials containing chain transfer agents: part II. experimental results. Journal of Optics, 2011, 13(9): 095602
https://doi.org/10.1088/2040-8978/13/9/095602
69 X Liu, Y Tomita, J Oshima, K Chikama, K Matsubara, T Nakashima, T Kawai. Holographic assembly of semiconductor CdSe quantum dots in polymer for volume Bragg grating structures with diffraction efficiency near 100%. Applied Physics Letters, 2009, 95(26): 261109
https://doi.org/10.1063/1.3276914
70 L P Krul, V Matusevich, D Hoff, R Kowarschik, Y I Matusevich, G V Butovskaya, E A Murashko. Modified polymethylmethacrylate as a base for thermostable optical recording media. Optics Express, 2007, 15(14): 8543–8549
https://doi.org/10.1364/OE.15.008543 pmid: 19547188
71 D A Waldman, H Y S Li, M G Horner. Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material. Journal of Imaging Science and Technology, 1997, 41(5): 497–514
72 D A Waldman, C J Butler, D H Raguin. CROP holographic storage media for optical data storage at greater than 100 bits/µm2. In: Proceedings of the Society for Photo-Instrumentation Engineers, 2003, 5216: 10
https://doi.org/10.1117/12.513614
73 L Dhar, A Hale, H E Katz, M Schilling, M G Schnoes, F C Schilling. Recording media that exhibit high dynamic range for digital holographic data storage. Optics Letters, 1999, 24(7): 487–489
https://doi.org/10.1364/OL.24.000487 pmid: 18071548
74 N Suzuki, Y Tomita, K Ohmori, M Hidaka, K Chikama. Highly transparent ZrO2 nanoparticle-dispersed acrylate photopolymers for volume holographic recording. Optics Express, 2006, 14(26): 12712–12719
https://doi.org/10.1364/OE.14.012712 pmid: 19532163
75 R M Shelby, D A Waldman, R T Ingwall. Distortions in pixel-matched holographic data storage due to lateral dimensional change of photopolymer storage media. Optics Letters, 2000, 25(10): 713–715
https://doi.org/10.1364/OL.25.000713 pmid: 18064160
76 L Dhar, K Curtis, M Tackitt, M Schilling, S Campbell, W Wilson, A Hill, C Boyd, N Levinos, A Harris. Holographic storage of multiple high-capacity digital data pages in thick photopolymer systems. Optics Letters, 1998, 23(21): 1710–1712
https://doi.org/10.1364/OL.23.001710 pmid: 18091892
77 Aprilis Inc.
78 K Anderson, M Ayres, B Sissom, F Askham. Holographic data storage: rebirthing a commercialization effort. In: Proceedings of the Society for Photo-Instrumentation Engineers, 2014, 9006: 90060C
https://doi.org/10.1117/12.2037429
79 F U S Askham. Patents, 8323854, 2012
80 K Park, B S Kim, J Lee. A 6/9 four-ary modulation code for four-level holographic data storage. Japanese Journal of Applied Physics, 2013, 52(9S2): 09LE05
https://doi.org/10.7567/JJAP.52.09LE05
81 J F Heanue, M C Bashaw, L Hesselink. Channel codes for digital holographic data storage. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 1995, 12(11): 2432–2439
https://doi.org/10.1364/JOSAA.12.002432
82 V Vadde, B V K V Kumar. Channel modeling and estimation for intrapage equalization in pixel-matched volume holographic data storage. Applied Optics, 1999, 38(20): 4374–4386
https://doi.org/10.1364/AO.38.004374 pmid: 18323924
83 J F Heanue, K Gürkan, L Hesselink. Signal detection for page-accessoptical memories with intersymbol interference. Applied Optics, 1996, 35(14): 2431–2438
https://doi.org/10.1364/AO.35.002431 pmid: 21085379
84 K M Chugg, X P Chen, M A Neifeld. Two-dimensional equalization in coherent and incoherent page-oriented optical memory. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 1999, 16(3): 549–562
https://doi.org/10.1364/JOSAA.16.000549
85 M Keskinoz, B V K V Kumar. Discrete magnitude-squared channel modeling, equalization, and detection for volume holographic storage channels. Applied Optics, 2004, 43(6): 1368–1378
https://doi.org/10.1364/AO.43.001368 pmid: 15008543
86 T Kim, G Kong, S Choi. Two-dimensional equalization using bilinear recursive polynomial model for holographic data storage systems. Japanese Journal of Applied Physics, 2012, 51(8S2): 08JD05
https://doi.org/10.7567/JJAP.51.08JD05
87 S G Srinivasa. Constrained Coding and Signal Processing for Holography. PhD Thesis, Georgia Institute of Technology, 2006
88 Y T Chen, M Ou-Yang, C C Lee. A recognition method in holographic data storage system by using structural similarity. In: Proceedings of the Society for Photo-Instrumentation Engineers, 2013, 8855: 88550J
https://doi.org/10.1117/12.2022962
89 C Y Chen, T D Chiueh. Hardware implementation of pixel detection in gray-scale holographic data storage systems. Applied Optics, 2012, 51(34): 8228–8235
https://doi.org/10.1364/AO.51.008228 pmid: 23207395
90 G Kong, S Choi. Effective two-dimensional partial response maximum likelihood detection scheme for holographic data storage systems. Japanese Journal of Applied Physics, 2012, 51(8S2): 08JB06
https://doi.org/10.7567/JJAP.51.08JB06
91 K Koo, S Y Kim, S W Kim. Modified two-dimensional soft output Viterbi algorithm with two-dimensional partial response target for holographic data storage. Japanese Journal of Applied Physics, 2012, 51(8): 08JB03
92 K Koo, S Y Kim, J J Jeong, S W Kim. Two-dimensional soft output Viterbi algorithm with a variable reliability factor for holographic data storage. Japanese Journal of Applied Physics, 2013, 52(9S2): 09LE03
https://doi.org/10.7567/JJAP.52.09LE03
93 G W Burr. Holographic data storage with arbitrarily misaligned data pages. Optics Letters, 2002, 27(7): 542–544
https://doi.org/10.1364/OL.27.000542 pmid: 18007859
94 C Y Chen, C C Fu, T D Chiueh. Low-complexity pixel detection for images with misalignment and interpixel interference in holographic data storage. Applied Optics, 2008, 47(36): 6784–6795
https://doi.org/10.1364/AO.47.006784 pmid: 19104530
95 H R Gu, L C Cao, Q S He, G F Jin. Compensation for pixel mismatch based on a three-pixel model in volume holographic data storage. In: Proceedings of the Society for Photo-Instrumentation Engineers, 2010, 7848: 78480
https://doi.org/10.1117/12.868997
96 M Ayres, A Hoskins, K Curtis. Image oversampling for page-oriented optical data storage. Applied Optics, 2006, 45(11): 2459–2464
https://doi.org/10.1364/AO.45.002459 pmid: 16623243
97 M R U S Ayres. Patents, 7623279, 2009
98 J J Ashley, B H Marcus. Two-dimensional low-pass filtering codes. IEEE Transactions on Communications, 1998, 46(6): 724–727
https://doi.org/10.1109/26.681399
99 K A S Immink, P H Siegel, J K Wolf. Codes for digital recorders. IEEE Transactions on Information Theory, 1998, 44(6): 2260–2299
https://doi.org/10.1109/18.720539
100 S G Srinivasa, S W McLaughlin. Enumeration algorithms for constructing (d(1), infinity, d(2), infinity) run length limited arrays: capacity estimates and coding schemes. In: Proceedings of IEEE Information Theory Workshop, 2004, 141–146
101 S Y Kim, J Lee. A simple 2/3 modulation code for multi-level holographic data storage. Japanese Journal of Applied Physics, 2013, 52(9S2): 09LE04
https://doi.org/10.7567/JJAP.52.09LE04
102 H Pishro-Nik, N Rahnavard, J Ha, F Fekri, A Adibi. Low-density parity-check codes for volume holographic memory systems. Applied Optics, 2003, 42(5): 861–870
https://doi.org/10.1364/AO.42.000861 pmid: 12593489
103 J Kim, J Lee. Simplified decoding of trellis-based error-correcting modulation codes using the M-algorithm for holographic data storage. Japanese Journal of Applied Physics, 2012, 51(8S2): 08JD02
https://doi.org/10.7567/JJAP.51.08JD02
104 R G Gallager. Low-density parity-check codes. I.R.E. Transactions on Information Theory, 1962, 8(1): 21–28
https://doi.org/10.1109/TIT.1962.1057683
105 D J C MacKay, R M Neal. Near Shannon limit performance of low density parity check codes. Electronics Letters, 1996, 32(18): 1645–1646
https://doi.org/10.1049/el:19961141
106 P Yoon, B Chung, H Kim, J Park, G Park. Low-density parity-check code for holographic data storage system with balanced modulation code. Japanese Journal of Applied Physics, 2008, 47(7): 5981–5988
https://doi.org/10.1143/JJAP.47.5981
107 G Ungerboeck. Channel coding with multilevel/phase signals. IEEE Transactions on Information Theory, 1982, 28(1): 55–67
https://doi.org/10.1109/TIT.1982.1056454
108 J Kim, J K Wee, J Lee. Error correcting 4/6 modulation codes for holographic data storage. Japanese Journal of Applied Physics, 2010, 49(8): 08KB04
https://doi.org/10.1143/JJAP.49.08KB04
109 Y Kim, G Kong, S Choi. Error correcting capable 2/4 modulation code using trellis coded modulation in holographic data storage. Japanese Journal of Applied Physics, 2012, 51(8S2): 08JD08
https://doi.org/10.7567/JJAP.51.08JD08
110 H Imai. Two-dimensional fire codes. IEEE Transactions on Information Theory, 1973, 19(6): 796–806
https://doi.org/10.1109/TIT.1973.1055093
111 K A S Abdel-Ghaffar, R J McEliece, H C K van Tilborg. Two-dimensional burst identification codes and their use in burst correction. IEEE Transactions on Information Theory, 1988, 34(3): 494–504
https://doi.org/10.1109/18.6029
112 M Blaum, J Bruck, A Vardy. Interleaving schemes for multidimensional cluster errors. IEEE Transactions on Information Theory, 1998, 44(2): 730–743
https://doi.org/10.1109/18.661516
113 T Etzion, A Vardy. Two-dimensional interleaving schemes with repetitions: constructions and bounds. IEEE Transactions on Information Theory, 2002, 48(2): 428–457
https://doi.org/10.1109/18.978765
114 A A Jiang, J Bruck. Multicluster interleaving on paths and cycles. IEEE Transactions on Information Theory, 2005, 51(2): 597–611
https://doi.org/10.1109/TIT.2004.840893
115 H R Gu, L C Cao, Q S He, G F Jin. Reed-Solomon volumetric coding with matched interleaving for holographic data storage. Japanese Journal of Applied Physics, 2012, 51(8R): 082502
https://doi.org/10.7567/JJAP.51.082502
[1] Changyu YU, Suping WANG, Ruixian CHEN, Jianying HAO, Qijing ZHENG, Jinyu WANG, Xianying QIU, Kun WANG, Dakui LIN, Yi YANG, Hui LI, Xiao LIN, Xiaodi TAN. Improved phase retrieval in holographic data storage based on a designed iterative embedded data[J]. Front. Optoelectron., 2021, 14(4): 529-539.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed