Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2015, Vol. 8 Issue (2) : 122-127    https://doi.org/10.1007/s12200-014-0461-z
LETTER
In vivo imaging of a single erythrocyte with high-resolution photoacoustic microscopy
Guo HE,Bingbing LI,Sihua YANG()
Ministry of Education Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics, South China Normal University, Guangzhou 510631, China
 Download: PDF(1486 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this letter, we reported a high-resolution photoacoustic microscopy (PAM) to image erythrocytes and blood vessels. The developed system had the ability to provide a lateral resolution of 1.0 μm at the wavelength of 532 nm with a × 10 objective. First, we used a sharp edge to measure the lateral resolution of the PAM and testified the stability with carbon fibers. Then, using this system, in vivo blood vessels and capillaries of a mouse ear, even a single erythrocyte can be clearly imaged. There was a pair of accompanying venule and arteriole, whose detailed and further complicated branches can be clearly identified. And likely red blood cells (RBCs) arrayed one by one in microvasculature was also shown. The experimental results demonstrate that the high-resolution PAM has potential clinical applications for imaging of erythrocytes and blood vessels.

Keywords in vivo      photoacoustic microscopy (PAM)      erythrocyte      microvasculature     
Corresponding Author(s): Sihua YANG   
Just Accepted Date: 19 November 2014   Online First Date: 02 February 2015    Issue Date: 24 June 2015
 Cite this article:   
Guo HE,Bingbing LI,Sihua YANG. In vivo imaging of a single erythrocyte with high-resolution photoacoustic microscopy[J]. Front. Optoelectron., 2015, 8(2): 122-127.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-014-0461-z
https://academic.hep.com.cn/foe/EN/Y2015/V8/I2/122
Fig.1  Schematic of high-resolution PAM. GM= Galvo scanner; SL= scanning lens; TL1= tube lens 1, TL2= tube lens 2, M= intermediate image plane; BS = beam splitter; OBJ = objective ( × 10, NA= 0.3; × 20, NA= 0.5; × 40, NA= 0.65); UTD= ultrasonic transducer; Amp= amplifier; DAQ= data acquisition
Fig.2  Lateral resolution of the high-resolution PAM. (a) Optical image of a knife; (b) photoacoustic image of the knife; (c) photoacoustic signal of the white solid line in (b), black square= experimental measurement, ESF= edge spread function, red solid line= theoretical fit; (d) LSF derived from the fitted ESF. LSF= line spread function
Fig.3  PAM imaging of the carbon fibers. (a), (b), (c) present the photoacoustic image of the carbon fibers with the objective magnification of × 10, × 20, × 40, respectively. The top right corner of each image is the guided optical image. The bar in each picture was 10 μm
Fig.4  Red blood cells imaged in vitro using our high-resolution PAM. (a) Photoacoustic image of red blood cells; (b) optical image corresponding to (a)
Fig.5  Blood vessels in a mouse ear imaged in vivo using our high-resolution PAM. (a) PA image of the microvasculature in a mouse ear with large field; (b) local amplification of the square area in (a)
1 Hu J, Yu M, Ye F, Xing D. In vivo photoacoustic imaging of osteosarcoma in a rat model. Journal of Biomedical Optics, 2011, 16(2): 020503
https://doi.org/10.1117/1.3544502 pmid: 21361659
2 Yin B, Xing D, Wang Y, Zeng Y, Tan Y, Chen Q. Fast photoacoustic imaging system based on 320-element linear transducer array. Physics in Medicine and Biology, 2004, 49(7): 1339–1346
https://doi.org/10.1088/0031-9155/49/7/019 pmid: 15128209
3 Wang Y, Xing D, Zeng Y, Chen Q. Photoacoustic imaging with deconvolution algorithm. Physics in Medicine and Biology, 2004, 49(14): 3117–3124
https://doi.org/10.1088/0031-9155/49/14/006 pmid: 15357185
4 Yang S, Xing D, Zhou Q, Xiang L, Lao Y. Functional imaging of cerebrovascular activities in small animals using high-resolution photoacoustic tomography. Medical Physics, 2007, 34(8): 3294–3301
https://doi.org/10.1118/1.2757088 pmid: 17879793
5 Ermilov S A, Khamapirad T, Conjusteau A, Leonard M H, Lacewell R, Mehta K, Miller T, Oraevsky A A. Laser optoacoustic imaging system for detection of breast cancer. Journal of Biomedical Optics, 2009, 14(2): 024007
https://doi.org/10.1117/1.3086616 pmid: 19405737
6 Wang L, Maslov K, Wang L V. Single-cell label-free photoacoustic flowoxigraphy in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(15): 5759–5764
https://doi.org/10.1073/pnas.1215578110 pmid: 23536296
7 Chen Z, Yang S, Xing D. In vivo detection of hemoglobin oxygen saturation and carboxyhemoglobin saturation with multiwavelength photoacoustic microscopy. Optics Letters, 2012, 37(16): 3414–3416
https://doi.org/10.1364/OL.37.003414 pmid: 23381275
8 Nie L, Chen X. Structural and functional photoacoustic molecular tomography aided by emerging contrast agents. Chemical Society Reviews, 2014, 43(20): 7132–7170
https://doi.org/10.1039/C4CS00086B pmid: 24967718
9 Sethuraman S, Amirian J H, Litovsky S H, Smalling R W, Emelianov S Y. Spectroscopic intravascular photoacoustic imaging to differentiate atherosclerotic plaques. Optics Express, 2008, 16(5): 3362–3367
https://doi.org/10.1364/OE.16.003362 pmid: 18542427
10 Xiang L, Xing D, Gu H, Yang D, Yang S, Zeng L, Chen W R. Real-time optoacoustic monitoring of vascular damage during photodynamic therapy treatment of tumor. Journal of Biomedical Optics, 2007, 12(1): 014001
https://doi.org/10.1117/1.2437752 pmid: 17343476
11 Wang X, Pang Y, Ku G, Xie X, Stoica G, Wang L V. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nature Biotechnology, 2003, 21(7): 803–806
https://doi.org/10.1038/nbt839 pmid: 12808463
12 Wang L V. Multiscale photoacoustic microscopy and computed tomography. Nature Photonics, 2009, 3(9): 503–509
https://doi.org/10.1038/nphoton.2009.157 pmid: 20161535
13 Tang H, Tang Z, Wu Y, Cai Q, Wu L, Chi Y. Differential photoacoustic microscopy technique. Optics Letters, 2013, 38(9): 1503–1505
https://doi.org/10.1364/OL.38.001503 pmid: 23632532
14 Zeng Y, Xing D, Wang Y, Yin B, Chen Q. Photoacoustic and ultrasonic coimage with a linear transducer array. Optics Letters, 2004, 29(15): 1760–1762
https://doi.org/10.1364/OL.29.001760 pmid: 15352361
15 Wang H, Yang X, Liu Y, Jiang B, Luo Q. Reflection-mode optical-resolution photoacoustic microscopy based on a reflective objective. Optics Express, 2013, 21(20): 24210–24218
https://doi.org/10.1364/OE.21.024210 pmid: 24104331
16 Yang S, Ye F, Xing D. Intracellular label-free gold nanorods imaging with photoacoustic microscopy. Optics Express, 2012, 20(9): 10370–10375
https://doi.org/10.1364/OE.20.010370 pmid: 22535126
17 Tan Z, Liao Y, Wu Y, Tang Z, Wang R K. Photoacoustic microscopy achieved by microcavity synchronous parallel acquisition technique. Optics Express, 2012, 20(5): 5802–5808
https://doi.org/10.1364/OE.20.005802 pmid: 22418386
18 Liang J, Gao L, Li C, Wang L V. Spatially Fourier-encoded photoacoustic microscopy using a digital micromirror device. Optics Letters, 2014, 39(3): 430–433
https://doi.org/10.1364/OL.39.000430 pmid: 24487832
19 Liang J, Zhou Y, Winkler A W, Wang L, Maslov K I, Li C, Wang L V. Random-access optical-resolution photoacoustic microscopy using a digital micromirror device. Optics Letters, 2013, 38(15): 2683–2686
https://doi.org/10.1364/OL.38.002683 pmid: 23903111
[1] Zhongwen CHENG, Haigang MA, Zhiyang WANG, Sihua YANG. In vivo volumetric monitoring of revascularization of traumatized skin using extended depth-of-field photoacoustic microscopy[J]. Front. Optoelectron., 2020, 13(4): 307-317.
[2] F. MAKOUEI,S. MAKOUEI. Design of temperature insensitive in vivo strain sensor using multilayer single mode optical fiber[J]. Front. Optoelectron., 2016, 9(4): 621-626.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed