Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2015, Vol. 8 Issue (4) : 413-418    https://doi.org/10.1007/s12200-015-0474-2
RESEARCH ARTICLE
An improved noise reduction algorithm based on wavelet transformation for MEMS gyroscope
Jianguo YUAN(),Yantao YUAN,Feilong LIU,Yu PANG,Jinzhao LIN
Key Lab of Optical Fiber Communication Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
 Download: PDF(646 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

To solve the large noise problem for the low-precision gyroscopes in micro-electro mechanical systems (MEMS) of inertial navigation system, an improved noise reduction method, based on the analyses of the fast Fourier transformation (FFT) noise reduction principle and the simple wavelet noise reduction principle, was proposed. Furthermore, the FFT noise reduction method, the simple wavelet noise reduction method and the improved noise reduction method were comparatively analyzed and experimentally verified in the case of the constant rate and dynamic rate. The experimental analysis results showed that the improved noise reduction method had a very good result in the noise reduction of the gyroscope data at different frequencies, and its performance was superior to those of the FFT noise reduction method and the simple wavelet noise reduction method.

Keywords micro-electro mechanical systems (MEMS)      gyroscopes      fast Fourier transformation (FFT) noise reduction      wavelet noise reduction     
Corresponding Author(s): Jianguo YUAN   
Just Accepted Date: 26 January 2015   Online First Date: 10 February 2015    Issue Date: 24 November 2015
 Cite this article:   
Jianguo YUAN,Yantao YUAN,Feilong LIU, et al. An improved noise reduction algorithm based on wavelet transformation for MEMS gyroscope[J]. Front. Optoelectron., 2015, 8(4): 413-418.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-015-0474-2
https://academic.hep.com.cn/foe/EN/Y2015/V8/I4/413
Fig.1  

Original signal of the MEMS gyroscope

Fig.2  

Comparison results of the constant rate noise reduction

Fig.3  

Comparison of the 10 Hz noise reduction effect

Fig.4  

Comparison of the 40 Hz noise reduction effect

Fig.5  

Comparison of the 75 Hz noise reduction effect

1 Peshekhonov  V G. Gyroscopic navigation systems: current status and prospects. Gyroscopy and Navigation, 2011, 2(3): 111–118
https://doi.org/10.1134/S2075108711030096
2 Acar  C, Schofield  A R, Trusov  A A. Environmentally robust MEMS vibratory gyroscopes for automotive. IEEE Sensors Journal, 2009, 9(12): 1895–1906
3 Zeng  B, Teng  Z S, Cai  Y L, Guo  S Y, Qing  B Y. Harmonic phasor analysis based on improved FFT algorithm. IEEE Transactions on, 2011, 2(1): 51–59
4 Liu  Q J, Chen  G M, Liu  X F, Zhan  J. Application of FFT and wavelet in signal denoising. Journal of Data Acquisition & Processing, 2009, 24 (S1): 58–60
5 Mao  B, Wu  J W, Wu  J T, Zhou  X M. MEMS gyro denoising based on second generation wavelet transform. In: Proceedings of IEEE on Pervasive Computing Signal Processing and Applications (PCSPA). 2010, 255–258
6 Wang  D K, Peng  J Y. Wavelet Analysis and Its Application in Signal  Processing. Beijing: Electronic Industry Press, 2006
7 Hao  W G, Ding  C F, Na  L. Comparison of wavelet denoise and FFT denoise. Electric Power Scienceand Engineering, 2011, 27(3): 59–61
8 Song  L J, Qin  Y Y, Yang  P X. Application of walelet threshold denosing on MEMS gyro. Journal of Test and Measurement Technology, 2009, 23(1): 33–36
9 Vaseghi  S V. Advanced Digital Signal Processing and Noise Reduction. New York: John Wiley & Sons, 2008
10 Kang  C H, Kim  S Y, Park  C G. Improvement of a low cost MEMS inertial-GPS integrated system using wavelet denoising techniques. International Journal of Aeronautical and Space Sciences, 2011, 12(4): 371–378
https://doi.org/10.5139/IJASS.2011.12.4.371
11 Han  M, Liu  Y, Xi  J, Guo  W. Noise smoothing for nonlinear time series using wavelet soft threshold. Signal Processing Letters, IEEE, 2007, 14(1): 62–65
https://doi.org/10.1109/LSP.2006.881518
12 Ji  X S, Wang  S, Xu  Y. Application of the digital signal procession in the MEMS gyroscope de-drift. In: Proceedings of IEEE International Conference on Nano/Micro Engineered and Molecular Systems. 2006, 218–221
13 Zhang  W L, Guo  S Y, Yin  J, Yu  F. Wavelet threshold de-noising for MEMS gyro. Journal of Applied Optics, 2009, 30(6): 1012–1015 (in Chinese)
14 Mao  B, Wu  J W, Wu  J T, Zhou  X M. MEMS gyro de-noising based on coefficients dependency in wavelet transform domain. In: Proceedings of IEEE International Conference on Mechatronics and Automation (ICMA). 2010, 1904–1907
15 Huang  L, Kemao  Q, Pan  B, Asundi  A K. Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe projection profilometry. Optics and Lasers in Engineering, 2010, 48(2): 141–148
https://doi.org/10.1016/j.optlaseng.2009.04.003
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed