Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2015, Vol. 8 Issue (4) : 402-412    https://doi.org/10.1007/s12200-015-0497-8
RESEARCH ARTICLE
Error compensation for three-dimensional profile measurement system
Xu YE1,Haobo CHENG1,*(),Zhichao DONG1,Hon-Yuen TAM2
1. School of Optoelectronics, Beijing Institute of Technology, Beijing 100081, China
2. Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China
 Download: PDF(1814 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Three-dimensional (3D) profile measurement is an indispensable process for assisting the manufacture of various optic, especially aspheric surfaces. This work presents the measurement error calibration of a 3D profile measurement system, namely PMI700. Measurement errors induced by measuring tool radius, alignment error and the temperature variation were analyzed through geometry analysis and simulation. A quantitative method for the compensation of tool radius and an alignment error compensation model based on the least square method were proposed to reduce the measurement error. To verify the feasibility of PMI700, a plane and a non-uniform hyperboloidal mirror were measured by PMI700 and interferometer, respectively. The data provided by two systems were high coincident. The direct subtractions of results from two systems indicate RMS deviations for both segments were less than 0.2λ.

Keywords aspheric surface      three-dimensional (3D) profile measurement      alignment error      error compensation     
Corresponding Author(s): Haobo CHENG   
Just Accepted Date: 04 June 2015   Online First Date: 30 June 2015    Issue Date: 24 November 2015
 Cite this article:   
Xu YE,Haobo CHENG,Zhichao DONG, et al. Error compensation for three-dimensional profile measurement system[J]. Front. Optoelectron., 2015, 8(4): 402-412.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-015-0497-8
https://academic.hep.com.cn/foe/EN/Y2015/V8/I4/402
Fig.1  

Sketch map of aspheric surfaces

Fig.2  

Schematic of PMI700. (a) CAD model of PMI700; (b) entity of PMI700

Fig.3  

Path of profile measurement. (a) Meridian line path; (b) concentric circles path; (c) helical line path

Fig.4  

Compensation of tool radius

Fig.5  

Model of alignment error between measuring tool and workpiece. (a) Geometrical relationship of alignment errors; (b) 3D distribution of alignment error

Fig.6  

Model of alignment error between measuring tool and turntable. (a) Geometrical relationship of alignment errors; (b) 3D distribution of alignment error

Fig.7  

Model of alignment error between workpiece and turntable. (a) Geometrical relationship among alignment errors; (b) 3D distribution of alignment error

Fig.8  

Influence of e measuring force on output value

Fig.9  

Measuring result of a transversal on convex mirror. (a) Measuring data; (b) differences between repeated measuring data

Fig.10  

Measuring result of a transversal on plane mirror. (a) Measuring data; (b) differences between repeated measuring data

Fig.11  

Influence of temperature on measuring value of PMI700

Fig.12  

Plane mirror measurement. (a) Raw data; (b) measuring result obtained by PMI700; (c) measuring result obtained by Zygo; (d) direct subtraction of measurement results of PMI700 and Zygo

Fig.13  

Hyperboloidal mirror measurement. (a) Raw data after removing tilt error; (b) measuring result obtained by PMI700; (c) measuring result obtained by sub-aperture stitching; (d) direct subtraction of measurement results of PMI700 and sub-aperture stitching interferometer

Tab.1  

Common measurement methods of aspherics

Tab.2  

PV and standard deviation of convex mirror

Tab.3  

PV and standard deviation of plane mirror.

1 Zamkotsian  F, Dohlen  K, Lanzoni  P, Mazzanti  S P, Michel  M L, Buat  V, Burgarella  D. Knife-edge test for characterization of sub-nanometer deformations in micro-optical surface. Proceedings of SPIE, Optical Manufacturing and Testing III, 1999, 3782: 328–336 
https://doi.org/10.1117/12.369202
2 Hernández-Gómez  G, Malacara-Hernández  Z, Malacara-Hernández  D. Hartmann tests to measure the spherical and cylindrical curvatures and the axis orientation of astigmatic lenses or optical surfaces. Applied Optics, 2014, 53(6): 1191–1199 24663320
https://doi.org/10.1364/AO.53.001191
3 Dickson  L D. Ronchi ruling method for measuring Gaussian beam diameter. Optical Engineering (Redondo Beach, Calif.), 1979, 18(1): 180170
4 Zhou  P, Burge  J H. Optimal design of computer-generated holograms to minimize sensitivity to fabrication errors. Optics Express, 2007, 15(23): 15410–15417
https://doi.org/10.1364/OE.15.015410 pmid: 19550826
5 Takasaki  H. Moiré topography. Applied Optics, 1970, 9(6): 1467–1472
https://doi.org/10.1364/AO.9.001467 pmid: 20076401
6 Chen  S, Li  S, Dai  Y, Zheng  Z. Testing of large optical surfaces with subaperture stitching. Applied Optics, 2007, 46(17): 3504–3509
https://doi.org/10.1364/AO.46.003504 pmid: 17514310
7 Kühn  J, Colomb  T, Montfort  F, Charrière  F, Emery  Y, Cuche  E, Marquet  P, Depeursinge  C. Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition. Optics Express, 2007, 15(12): 7231–7242
https://doi.org/10.1364/OE.15.007231 pmid: 19547044
8 Barrientos  B, Martínez-CelorioR  A, López  L M, Dirckx  J J J, Cywiak  M. Measurement of out-of-plane deformation by combination of speckle shearing interferometry. Optik (Stuttgart), 2004, 115(6): 248–252
https://doi.org/10.1078/0030-4026-00362
9 Goodwin  E P, Wyant  J C. Field Guide to Interferometric Optical Testing. Bellingham, WA: SPIE Press, 2006
10 Breidenthal  R S. Measurement of large optical surfaces for fabrication using a non-optical technique. Proceedings of SPIE, Large Optics II, 1992, 1618: 97–103
11 Comley  P, Morantz  P, Shore  P, Tonnellier  X. Grinding metre scale mirror segments for the E-ELT ground based telescope. CIRP Annals-Manufacturing Technology, 2011, 60(1): 379–382
https://doi.org/10.1016/j.cirp.2011.03.120
12 Gray  C, Baker  I, Davies  G. Fast manufacturing of E-ELT mirror segments using CNC polishing. Proceedings of SPIE, Optical Manufacturing and Testing X, 2013, 8838: 88380K
13 Su  P, Oh  C J, Parks  R E, Burge  J H. Swing arm optical CMM for aspherics. Proceedings of SPIE, Optical Manufacturing and Testing VIII, 2009, 7426: 74260J
14 Su  P, Wang  Y H, Oh  C J, Parks  R E, Burge  J H. Swing arm optical CMM: self-calibration with dual probe shear test. Proceedings of SPIE, Optical Manufacturing and Testing IX, 2011, 8126: 81260W
15 Jing  H, King  C, Walker  D. Simulation and validation of a prototype swing arm profilometer for measuring extremely large telescope mirror-segments. Optics Express, 2010, 18(3): 2036–2048
https://doi.org/10.1364/OE.18.002036 pmid: 20174033
16 Jing  H, King  C, Walker  D. Measurement of influence function using swing arm profilometer and laser tracker. Optics Express, 2010, 18(5): 5271–5281
https://doi.org/10.1364/OE.18.005271 pmid: 20389539
17 Chen  F J, Yin  S H, Huang  H, Ohmori  H, Wang  Y, Fan  Y F, Zhu  Y J. Profile error compensation in ultra-precision grinding of aspheric sur faces with on-machine measurement. International Journal of Machine Tools & Manufacture, 2010, 50(5): 480–486
https://doi.org/10.1016/j.ijmachtools.2010.01.001
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed