Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2015, Vol. 8 Issue (4) : 451-455    https://doi.org/10.1007/s12200-015-0532-9
RESEARCH ARTICLE
Changes of muscle oxygenation and blood lactate concentration of swimming athletes during graded incremental exercise
Yuxiang WU1,Tao SONG1,Guodong XU1,2,*()
1. School of Physical Education, Jianghan University, Wuhan 430056, China
2. School of Health Sciences, Wuhan Institute of Physical Education, Wuhan 430079, China
 Download: PDF(341 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The sport performance of swimming athletes in three different levels including 5 national high-level swimming athletes, 5 ordinary swimming athletes and 5 college students was investigated by near-infrared spectroscopy (NIRS). Four parameters of muscle oxygenation and blood lactate (BLa) concentration were simultaneously monitored during incremental exercise on the ergometer. It was found that inflection points of muscle oxygenation and BLa concentration were consistent with the human sport capacity. Moreover, inflection points of muscle oxygenation occurred earlier than those of BLa concentration in ordinary athletes and college students. It implies monitoring changes of muscle oxygenation is superior to BLa measurement under this condition, since BLa test has an unavoidable time lag. Significant correlation (r2 = 0.948; P<0.05) was observed between inflection points of muscle oxygenation difference and inflection points of BLa concentration on workload. This relationship suggests changes of muscle oxygenation detected by NIRS is beneficial to the evaluation of athletes’ physiologic function and training load. Considering that muscle oxygenation could be in-vivo and non-invasively measured by NIRS, it may be a better indicator of exercise intensity than BLa measurement in the near future.

Keywords functional evaluation      muscle oxygenation      near-infrared spectroscopy (NIRS)      blood lactate (BLa)     
Corresponding Author(s): Guodong XU   
Online First Date: 26 October 2015    Issue Date: 24 November 2015
 Cite this article:   
Yuxiang WU,Tao SONG,Guodong XU. Changes of muscle oxygenation and blood lactate concentration of swimming athletes during graded incremental exercise[J]. Front. Optoelectron., 2015, 8(4): 451-455.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-015-0532-9
https://academic.hep.com.cn/foe/EN/Y2015/V8/I4/451
Fig.1  

Schematic diagram of near infrared spectroscopy in layered tissue with muscle A/D represents analog to digital converter. A/D analog to digital converter

Fig.2  

Changes of muscle oxygenation and BLa concentration in college students group during graded incremental exercise

Fig.3  

Changes of muscle oxygenation and BLa concentration in ordinary-level athletes during graded incremental exercise

Fig.4  

Changes of muscle oxygenation and BLa concentration in high-level athletes during graded incremental exercise

null

Notes: Groups A, B and C represent high-level, ordinary-level athletes and ordinary college students respectively. ATT, adipose tissue thickness

Tab.1  

Subject characteristics, data are expressed as mean±standard deviation (SD)

1 Ferrari  M, Mottola  L, Quaresima  V. Principles, techniques, and limitations of near infrared spectroscopy. Canadian Journal of Applied Physiology, 2004, 29(4): 463–487
https://doi.org/10.1139/h04-031 pmid: 15328595
2 Hollmann  W. 42 years ago—development of the concepts of ventilatory and lactate threshold. Sports Medicine (Auckland, N.Z.), 2001, 31(5): 315–320
https://doi.org/10.2165/00007256-200131050-00002 pmid: 11347682
3 Jöbsis  F F. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science, 1977, 198(4323): 1264–1267
https://doi.org/10.1126/science.929199 pmid: 929199
4 Nioka  S, Moser  D, Lech  G, Evengelisti  M, Verde  T, Chance  B, Kuno  S. Muscle deoxygenation in aerobic and anaerobic exercise. Advances in Experimental Medicine and Biology, 1998, 454: 63–70
https://doi.org/10.1007/978-1-4615-4863-8_8 pmid: 9889877
5 Treacher  D F, Leach  R M. Oxygen transport-1. basic principles. British Medical Journal, 1998, 317(7168): 1302–1306
https://doi.org/10.1136/bmj.317.7168.1302 pmid: 9804723
6 Beneke  R, Leithäuser  R M, Ochentel  O. Blood lactate diagnostics in exercise testing and training. International Journal of Sports Physiology and Performance, 2011, 6(1): 8–24
pmid: 21487146
7 Devlin  J, Paton  B, Poole  L, Sun  W, Ferguson  C, Wilson  J, Kemi  O J. Blood lactate clearance after maximal exercise depends on active recovery intensity. Journal of Sports Medicine and Physical Fitness, 2014, 54(3): 271–278
pmid: 24739289
8 Aguiar  R A, Cruz  R S, Turnes  T, Pereira  K L, Caputo  F. Relationships between VO2 and blood lactate responses after all-out running exercise. Applied Physiology, Nutrition, and Metabolism, 2015, 40(3): 263–268
https://doi.org/10.1139/apnm-2014-0364 pmid: 25693899
9 Baker  J S, Thomas  N, Cooper  S M, Davies  B, Robergs  R A. Exercise duration and blood lactate concentrations following high intensity cycle ergometry. Research in Sports Medicine, 2012, 20(2): 129–141
pmid: 22458829
10 Bellezza  P A, Hall  E E, Miller  P C, Bixby  W R. The influence of exercise order on blood lactate, perceptual, and affective responses. Journal of Strength and Conditioning Research, 2009, 23(1): 203–208
https://doi.org/10.1519/JSC.0b013e3181889156 pmid: 19130645
11 Faude  O, Kindermann  W, Meyer  T. Lactate threshold concepts: how valid are they? Sports Medicine (Auckland, N.Z.), 2009, 39(6): 469–490
https://doi.org/10.2165/00007256-200939060-00003 pmid: 19453206
12 Garcia-Tabar  I, Llodio  I, Sánchez-Medina  L, Ruesta  M, Ibañez  J, Gorostiaga  E M. Heart rate based prediction of fixed blood lactate thresholds in professional team-sport players. Journal of Strength and Conditioning Research, 2015,  29(10): 2794–801
https://doi.org/10.1519/JSC.0000000000000957 pmid: 25844867
13 Bhambhani  Y N. Muscle oxygenation trends during dynamic exercise measured by near infrared spectroscopy. Canadian Journal of Applied Physiology, 2004, 29(4): 504–523
https://doi.org/10.1139/h04-033 pmid: 15328597
14 Chance  B, Anday  E, Nioka  S, Zhou  S, Hong  L, Worden  K, Li  C, Murray  T, Ovetsky  Y, Pidikiti  D, Thomas  R. A novel method for fast imaging of brain function, non-invasively, with light. Optics Express, 1998, 2(10): 411–423
https://doi.org/10.1364/OE.2.000411 pmid: 19381209
15 Hamaoka  T, McCully  K K, Quaresima  V, Yamamoto  K, Chance  B. Near-infrared spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans. Journal of Biomedical Optics, 2007, 12(6): 062105
16 McCully  K. Near infrared spectroscopy in the evaluation of skeletal muscle disease. Muscle & Nerve, 2002, 25(5): 629–631
https://doi.org/10.1002/mus.10096 pmid: 11994956
17 Quaresima  V, Ferrari  M. Muscle oxygenation by near-infrared-based tissue oximeters. Journal of Applied Physiology (1985), 2009, 107(1): 371
18 Lai  N, Zhou  H, Saidel  G M, Wolf  M, McCully  K, Gladden  L B, Cabrera  M E. Modeling oxygenation in venous blood and skeletal muscle in response to exercise using near-infrared spectroscopy. Journal of Applied Physiology (1985), 2009, 106(6): 1858–1874
19 Sassaroli  A, Fantini  S. Comment on the modified Beer-Lambert law for scattering media. Physics in Medicine and Biology, 2004, 49(14): N255–N257
https://doi.org/10.1088/0031-9155/49/14/N07 pmid: 15357206
20 Villringer  A, Chance  B. Non-invasive optical spectroscopy and imaging of human brain function. Trends in Neurosciences, 1997, 20(10): 435–442
https://doi.org/10.1016/S0166-2236(97)01132-6 pmid: 9347608
21 Wolf  M, Ferrari  M, Quaresima  V. Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications. Journal of Biomedical Optics, 2007, 12(6): 062104
https://doi.org/10.1117/1.2804899 pmid: 18163807
22 Zhang  Z, Wang  B, Nie  Q, Luo  Q, Gong  H. Portable muscle oxygenation monitor based on near infrared spectroscopy. Frontiers of Optoelectronics in China, 2009, 2(3): 248–252
https://doi.org/10.1007/s12200-009-0050-8
23 Zhang  Z, Wang  B, Gong  H, Xu  G, Nioka  S, Chance  B. Comparisons of muscle oxygenation changes between arm and leg muscles during incremental rowing exercise with near-infrared spectroscopy. Journal of Biomedical Optics, 2010, 15(1): 017007–017008
https://doi.org/10.1117/1.3309741 pmid: 20210481
24 Wang  B, Tian  Q, Zhang  Z, Gong  H. Comparisons of local and systemic aerobic fitness parameters between finswimmers with different athlete grade levels. European Journal of Applied Physiology, 2012, 112(2): 567–578
https://doi.org/10.1007/s00421-011-2007-z pmid: 21611824
25 Grassi  B, Quaresima  V, Marconi  C, Ferrari  M, Cerretelli  P. Blood lactate accumulation and muscle deoxygenation during incremental exercise. Journal of Applied Physiology, 1999, 87(1): 348–355
pmid: 10409594
26 Xu  G, Mao  Z, Ye  Y, Lv  K. Relationship between muscle oxygenation by NIRS and blood lactate. Journal of Physics: Conference Series, 2011, 277(1): 012042
https://doi.org/10.1088/1742-6596/277/1/012042
27 Xu  G D, Liu  F, Gong  H, Ge  X F, Luo  Q M. Blood oxygen and lactate concentrations in skeletal muscles during exercise. Space Medicine & Medical Engineering, 2003, 16(1): 41–43
pmid: 12728961
[1] Zhongxing ZHANG, Bangde WANG, Qing NIE, Qingming LUO, Hui GONG. Portable muscle oxygenation monitor based on near infrared spectroscopy[J]. Front Optoelec Chin, 2009, 2(3): 248-252.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed