Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2017, Vol. 10 Issue (3) : 255-266    https://doi.org/10.1007/s12200-017-0717-5
REVIEW ARTICLE
In vivo skin imaging prototypes “made in Latvia”
Janis SPIGULIS()
Biophotonics Laboratory, Institute of Atomic Physics and Spectroscopy, University of Latvia, Riga, LV-1586, Latvia
 Download: PDF(559 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper briefly reviews the operational principles and designs of portable in vivo skin imaging prototypes developed at the Biophotonics Laboratory of the Institute of Atomic Physics and Spectroscopy, University of Latvia. Four types of imaging devices are presented. Multi-spectral imagers ensure distant mapping of specific skin parameters (e.g., distribution of skin chromophores). Autofluorescence photobleaching rate imagers show potential for skin tumor assessment and margin delineation. Photoplethysmography video-imagers remotely detect cutaneous blood pulsations and provide real-time information on the human cardiovascular state. Multimodal skin imagers perform the above-mentioned functions by acquiring several spectral and video images using the same image sensor.

Keywords multispectral skin imaging      autofluorescence photobleaching      remote photoplethysmography     
Corresponding Author(s): Janis SPIGULIS   
Just Accepted Date: 04 July 2017   Online First Date: 21 August 2017    Issue Date: 26 September 2017
 Cite this article:   
Janis SPIGULIS. In vivo skin imaging prototypes “made in Latvia”[J]. Front. Optoelectron., 2017, 10(3): 255-266.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-017-0717-5
https://academic.hep.com.cn/foe/EN/Y2017/V10/I3/255
Fig.1  Design scheme of the smartphone RGB illuminator (a), and normalized emission spectra of the used color LEDs
Fig.2  Design details of the smartphone-LED prototype device (a) and its outlook with a smartphone on it (b). 1 – smartphone, 2 – sticky fixing platform with a camera window, 3 – holding ring, 4 – polarizer of the detected light, 5 – LED ring comprising four sets of LEDs, 6 – light diffuser, 7 – illumination polarizer (oriented orthogonally to the polarizer 4), 8- screening spacer, 9 – silicone skin contact ring, 10 – compartment for batteries and electronic components
Fig.3  Block diagram of the modified video-microscope
Fig.4  Developed LED control unit (a), and the modified video-microscope with the replaced illumination unit (b)
Fig.5  Absorption of three main skin chromophores [22,23] at three fixed wavelengths
Fig.6  Design scheme of the three-wavelength laser add-on illuminator (a) and the mobile prototype with a smartphone on it (b). 1 – laser modules (three pairs; 448, 532, and 659 nm), 2 – shielding cylinder, 3 – laser beam collector, 4 – flat ring-shaped diffuser of laser light, 5 – sticky platform for the smartphone, 6 – electronics compartment
Fig.7  Design scheme (a) and outlook (b) of the prototype device for switchable four-laser-wavelengths skin illumination
Fig.8  Skin autofluorescence photobleaching under continuous 532-nm-wavelength laser irradiation (10–85 mW/cm2). (a) Temporal changes in the emission spectrum [29]; (b) partial recovery of the autofluorescence intensity after interrupted excitation [30]
Fig.9  Design scheme (a) and outlook (b) of the prototype device for skin fluorescence imaging using a smartphone. 1 – smartphone, 2 – sticky fixing plate with camera window, 3 – mounting rings, 8 – cylindrical screening spacer, 9 – silicone skin-contact ring, 10 – battery/electronics compartment, 11 – long-pass filter, 12 – LED ring
Fig.10  Hardware components of the dual-wavelength photoplethysmography imaging device. The bottom view of the imaging system- camera and light sources (a), and the entire device with a vacuum pillow supporting the palm (b)
Fig.11  Compact PPGI prototype device in operation (a) and the front view of the device (b)
Fig.12  SkImager prototype device in its battery-charging holder (a), internal design details (b) and functional scheme (c)
Fig.13  Measured emission bands of exploited LEDs (a) and spectral sensitivities of the CMOS image sensor (b)
Fig.14  Photograph of the 3D-printed modular multimodal imaging prototype device
1 Spigulis J. Biophotonic technologies for noninvasive assessment of skin condition and blood microcirculation. Latvian Journal of Physics and Technical Sciences 2012, 49(5): 63–80
2  ( accessed on 12.03.2017)
3 Jakovels D, Spigulis J, Rogule L. RGB mapping of hemoglobin distribution in skin. Proceedings of the Society for Photo-Instrumentation Engineers, 2011, 8087: 80872B
https://doi.org/10.1117/12.889665
4 Jakovels D, Kuzmina I, Berzina A, Valeine L, Spigulis J. Noncontact monitoring of vascular lesion phototherapy efficiency by RGB multispectral imaging. Journal of Biomedical Optics, 2013, 18(12): 126019
https://doi.org/10.1117/1.JBO.18.12.126019 pmid: 24362928
5 Jakovels D, Spigulis J. 2-D mapping of skin chromophores in the spectral range 500−700 nm. Journal of Biophotonics, 2010, 3(3): 125–129
https://doi.org/10.1002/jbio.200910069 pmid: 19894217
6 Jakovels D, Spigulis J. RGB imaging device for mapping and monitoring of hemoglobin distribution in skin. Lithuanian Journal of Physics, 2012, 52(1): 50–54
https://doi.org/10.3952/physics.v52i1.2267
7 Philips Vital Signs Camera.  ( accessed on 12.03.2017)
8 The best heart disease iPhone & Android Apps of the year.  ( accessed on 12.03.2017)
9 Skinvision.  ( accessed on 12.03.2017)
10 Spigulis J, Lacis M, Kuzmina I, Lihacovs A, Upmalis V, Rupenheits Z. Method and device for smartphone mapping of tissue compounds. WO 2017/012675 A1, 2017
11 Kuzmina I, Lacis M, Spigulis J, Berzina A, Valeine L. Study of smartphone suitability for mapping of skin chromophores. Journal of Biomedical Optics, 2015, 20(9): 090503
https://doi.org/10.1117/1.JBO.20.9.090503 pmid: 26405818
12  ( accessed on 12.03.2017)
13  ( accessed on 12.03.2017)
14 Diebele I, Kuzmina I, Lihachev A, Kapostinsh J, Derjabo A, Valeine L, Spigulis J. Clinical evaluation of melanomas and common nevi by spectral imaging. Biomedical Optics Express, 2012, 3(3): 467–472
https://doi.org/10.1364/BOE.3.000467 pmid: 22435095
15 Bekina A, Diebele I, Rubins U, Zaharans J, Derjabo A, Spigulis J. Multispectral assessment of skin malformations by modified video-microscope. Latvian Journal of Physics and Technical Sciences, 2012, 49(5): 4–8
16 Bekina A, Rubins U, Lihacova I, Zaharans J, Spigulis J. Skin chromophore mapping by means of a modified video-microscope for skin malformation diagnosis. Proceedings of the Society for Photo-Instrumentation Engineers, 2013, 8856: 88562G
https://doi.org/10.1117/12.2023960
17 Rubins U, Zaharans J, Lihacova I, Spigulis J. Multispectral video-microscope modified for skin diagnostics. Latvian Journal of Physics and Technical Sciences, 2014, 51(5): 65–70
18 Spigulis J, Elste L. Method and device for imaging of spectral reflectance at several wavelength bands. WO2013135311 (A1), 2012
19 Spigulis J, Jakovels D, Rubins U. Multi-spectral skin imaging by a consumer photo-camera. Proceedings of the Society for Photo-Instrumentation Engineers, 2010, 7557: 75570M
https://doi.org/10.1117/12.845492
20 Spigulis J, Oshina I. Snapshot RGB mapping of skin melanin and hemoglobin. Journal of Biomedical Optics, 2015, 20(5): 050503
https://doi.org/10.1117/1.JBO.20.5.050503 pmid: 25992844
21 Spigulis J, Oshina I, Berzina A, Bykov A. Smartphone snapshot mapping of skin chromophores under triple-wavelength laser illumination. Journal of Biomedical Optics, 2017, 22(9): 091508
https://doi.org/10.1117/1.JBO.22.9.091508 pmid: 28253387
22 Prahl S. Tabulated molar extinction coefficient for hemoglobin in water.  ( accessed 30 November 2016)
23 Sarna T, Swartz H M. The physical properties of melanin.  ( accessed 30 November 2016)
24 Spigulis J, Elste L. Single-snapshot RGB multispectral imaging at fixed wavelengths: proof of concept. Proceedings of the Society for Photo-Instrumentation Engineers, 2014, 8937: 89370L
https://doi.org/10.1117/12.2039442
25 Spigulis J, Oshina I. Method and device for chromophore mapping under illumination by several spectral lines. LV patent 15106 B, 2016
26 Rubins U, Kviesis-Kipge E, Spigulis J. Device for obtaining speckle-free images at illumination by scattered laser beams. LV patent application P-17–17, 2017
27 Oshina I, Spigulis J, Rubins U, Kviesis-Kipge E, Lauberts K. Express RGB mapping of three to five skin chromophores. OSA Technical Digests, 2017 (ECBO Proceedings, Munich, in press)
28 Lihachev A, Lesins Jh D, Jakovels J, Spigulis. Low power cw-laser signatures on human skin. Quantum Electronics, 2011, 40(12): 1077–1080
https://doi.org/10.1070/QE2010v040n12ABEH014470
29 Stratonnikov A A, Polikarpov V S, Loschenov V B. Photobleaching of endogenous fluorochroms in tissues in vivo during laser irradiation. Proceedings of the Society for Photo-Instrumentation Engineers, 2001, 4241: 13–24
https://doi.org/10.1117/12.431555
30 Lesinsh J, Lihachev A, Rudys R, Bagdonas S, Spigulis J. Skin autofluorescence photobleaching and photo-memory. Proceedings of the Society for Photo-Instrumentation Engineers, 2011, 8092: 80920N
https://doi.org/10.1117/12.889861
31 Spigulis J, Lihachev A, Erts R. Imaging of laser-excited tissue autofluorescence bleaching rates. Applied Optics, 2009, 48(10): D163–D168
https://doi.org/10.1364/AO.48.00D163 pmid: 19340105
32 Lihachev A, Derjabo A, Ferulova I, Lange M, Lihacova I, Spigulis J. Autofluorescence imaging of basal cell carcinoma by smartphone RGB camera. Journal of Biomedical Optics, 2015, 20(12): 120502
https://doi.org/10.1117/1.JBO.20.12.120502 pmid: 26662298
33 Allen J. Photoplethysmography and its application in clinical physiological measurement. Physiological Measurement, 2007, 28(3): R1–R39
https://doi.org/10.1088/0967-3334/28/3/R01 pmid: 17322588
34 Spigulis J. Optical noninvasive monitoring of skin blood pulsations. Applied Optics, 2005, 44(10): 1850–1857
https://doi.org/10.1364/AO.44.001850 pmid: 15813522
35 Rubins U, Upmalis V, Rubenis O, Jakovels D, Spigulis J. Real-time photoplethysmography imaging system. Proceedings of IFMBE, 2011, 34: 183–186
36 Rubins U, Spigulis J, Miscuks A. Photoplethysmography imaging algorithm for continuous monitoring of regional anesthesia. In: Proceedings of the 14th ACM/IEEE Symposium on Embedded Systems for Real-Time Multimedia, ESTIMedia'16. 2016: 67–71
37 Rubins U, Spigulis J, Miscuks A. Application of color magnification technique for revealing skin microcircuration changes under regional anaesthetic input. Proceedings of the Society for Photo-Instrumentation Engineers, 2013, 9032: 903203
https://doi.org/10.1117/12.2044574
38 Spigulis J, Gailite L, Lihachev A, Erts R. Simultaneous recording of skin blood pulsations at different vascular depths by multiwavelength photoplethysmography. Applied Optics, 2007, 46(10): 1754–1759
https://doi.org/10.1364/AO.46.001754 pmid: 17356618
39 Marcinkevics Z, Rubins U, Zaharans J, Miscuks A, Urtane E, Ozolina-Moll L. Imaging photoplethysmography for clinical assessment of cutaneous microcirculation at two different depths. Journal of Biomedical Optics, 2016, 21(3): 035005
https://doi.org/10.1117/1.JBO.21.3.035005 pmid: 27027825
40 Spigulis J, Garancis V, Rubins U, Zaharans E, Zaharans J, Elste L. A device for multimodal imaging of skin. Proceedings of the Society for Photo-Instrumentation Engineers, 2013, 8574: 85740J
https://doi.org/10.1117/12.2003510
41 Spigulis J, Rubins U, Kviesis-Kipge E, Rubenis O. SkImager: a concept device for in-vivo skin assessment by multimodal imaging. Proceedings of the Estonian Academy of Sciences, 2014, 63(3): 213–220
https://doi.org/10.3176/proc.2014.3.02
42 Embedded linux on board computer decsription,  ( accessed on 12.03.2017)
43 Industrial USB cameras description,  ( accessed on 12.03.2017)
44 Bliznuks D, Jakovels D, Saknite I, Spigulis J. Mobile platform for online processing of multimodal skin optical images: using online Matlab server for processing remission, fluorescence and laser speckle images, obtained by using novel handheld device. In: Proceedings of BioPhotonics 2015 (Florence). 2015: 7304024
45 Jakovels D, Saknite I, Bliznuks D, Spigulis J, Kadikis R. Benign-atypical nevi discrimination using diffuse reflectance and fluorescence multispectral imaging system. In: Proceedings of BioPhotonics 2015 (Florence). 2015: 7304026
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed