Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2017, Vol. 10 Issue (3) : 292-298    https://doi.org/10.1007/s12200-017-0720-x
RESEARCH ARTICLE
Excitation-emission matrices (EEMs) of colorectal tumors – tool for spectroscopic diagnostics of gastrointestinal neoplasia
E. BORISOVA1(), Ts. GENOVA1, O. SEMYACHKINA-GLUSHKOVSKAYA2, N. PENKOV3, I. TERZIEV3, B. VLADIMIROV3
1. Institute of Electronics, Bulgarian Academy of Sciences, Tsarigradsko Chaussee 72, Sofia 1784, Bulgaria
2. Saratov State University, Astrakhanskaya Str. 83, Saratov 410012, Russia
3. Tsaritsa Yoanna – ISUL University Hospital, 8, Byalo More Str., Sofia 1572, Bulgaria
 Download: PDF(398 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The autofluorescence spectroscopy of biological tissues is a powerful tool for non-invasive detection of tissue pathologies and evaluation of any biochemical and morphological changes arising during the lesions’ growth. To obtain a full picture of the whole set of endogenous fluorophores appearing in the gastrointestinal (GI) tumors investigated, the technique of excitation-emission matrix (EEM) development was applied in a broad spectral region, covering the ultraviolet and visible spectral ranges. We could thus address a set of diagnostically-important chromophores and their alterations during tumor development, namely, collagen, elastin, nicotinamide adenine dinucleotide (NADH), flavins, porphyrins, while hemoglobin’s absorption influence on the spectra obtained could be evaluated as well. Comparisons are presented between EEM data of normal mucosae, benign polyps and malignant carcinoma, and the origins are determined of the fluorescence signals forming these matrices.

Keywords autofluorescence spectroscopy      excitation-emission matrix (EEM)      colon carcinoma      gastrointestinal (GI) tumours     
Corresponding Author(s): E. BORISOVA   
Just Accepted Date: 30 June 2017   Online First Date: 09 August 2017    Issue Date: 26 September 2017
 Cite this article:   
E. BORISOVA,Ts. GENOVA,O. SEMYACHKINA-GLUSHKOVSKAYA, et al. Excitation-emission matrices (EEMs) of colorectal tumors – tool for spectroscopic diagnostics of gastrointestinal neoplasia[J]. Front. Optoelectron., 2017, 10(3): 292-298.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-017-0720-x
https://academic.hep.com.cn/foe/EN/Y2017/V10/I3/292
Fig.1  Excitation-emission matrices of (a) normal mucosa, (b) benign colon polyp, (c) colon carcinoma and (d) rectum carcinoma for the 280−440 nm excitation wavelength range and emission detected in the 300−800 nm wavelength range. The EEM data presented are the resulting averaged spectrum of all tissue samples of a given type detectedex vivo
Fig.2  Autofluorescence spectra of (a) normal mucosa, (b) benign colon polyp, (c) colon carcinoma and (d) rectum carcinoma for different excitation wavelengths applied in the 280−440 nm region, normalized with respect to the integral intensity (spectral curve area)
Fig.3  Autofluorescence spectra of normal, benign and malignant gastrointestinal tissues using excitation at 420 nm. The spectra are normalized with respect to the integral intensity of the fluorescence emission
1 Young P E, Womeldorph  C M. Colonoscopy for colorectal cancer screening. Journal of Cancer, 2013, 4(3): 217–226
https://doi.org/10.7150/jca.5829 pmid: 23459594
2 Jemal A, Bray  F, Center M M ,  Ferlay J ,  Ward E, Forman  D. Global cancer statistics. CA: a Cancer Journal for Clinicians, 2011, 61(2): 69–90
https://doi.org/10.3322/caac.20107 pmid: 21296855
3 Benson A B 3rd. Epidemiology, disease progression, and economic burden of colorectal cancer. Journal of Managed Care Pharmacy:JMCP, 2007, 13(6 Suppl C): 5–18
https://doi.org/10.18553/jmcp.2007.13.s6-c.5 pmid: 17713990
4 Song M, Ang  T.Early detection of early gastric cancer using image-enhanced endoscopy: current trends. Gastrointestinal Intervention,  2014, 3(1): 1–7
5 Fujiya M, Kohgo  Y. Image-enhanced endoscopy for the diagnosis of colon neoplasms. Gastrointestinal Endoscopy, 2013, 77(1): 111–118.e5
https://doi.org/10.1016/j.gie.2012.07.031 pmid: 23148965
6 Johansson A, Kromer  K, Sroka R ,  Stepp H . Clinical optical diagnostics: Status and perspectives. Medical Laser Application, 2008, 23(4): 155–174
https://doi.org/10.1016/j.mla.2008.08.002
7 Hasan M, Wallace  M. Image-enhanced endoscopy. Clinical Update, 2009, 16(4): 1–5
https://doi.org/10.1016/j.clinup.2009.03.001
8 Subramanian V, Ragunath  K. Advanced endoscopic imaging: a review of commercially available technologies. Clinical Gastroenterology and Hepatology : the Official Clinical Practice Journal of the American Gastroenterological Association, 2014, 12(3): 368–76.e1
https://doi.org/10.1016/j.cgh.2013.06.015 pmid: 23811245
9 Ramanujam N.Fluorescence spectroscopy of neoplastic and non-neoplastic tissues. Neoplasia, 2000,  2(1- 2): 89–117
10 Wong KeeSong L M, Banerjee S ,  Desilets D ,  Diehl D L ,  Farraye F A ,  Kaul V, Kethu  S R, Kwon  R S, Mamula  P, Pedrosa M C ,  Rodriguez S A ,  Tierney W M . Autofluorescence imaging. Gastrointestinal Endoscopy, 2011, 73(4): 647–650
https://doi.org/10.1016/j.gie.2010.11.006 pmid: 21296349
11 Prosst R L, Gahlen  J. Fluorescence diagnosis of colorectal neoplasms: a review of clinical applications. International Journal of Colorectal Disease, 2002, 17(1): 1–10
https://doi.org/10.1007/s003840100343 pmid: 12018447
12 Ferreira D S, Henriques  M, Oliveira R ,  Correia J H ,  Minas G. Autofluorescence spectroscopy of a human gastrointestinal carcinoma cell line: design of optical sensors for the detection of early stage cancer. In: Proceedings of the International Conference on Biomedical Electronics and Devices 2009, Porto, Portugal. 2009: 61–66
13 Van Putten P, Ramsoekh  D, Haringsma J ,  Poley J W ,  Van Dekken H ,  Steyerberg E ,  Van M E ,  Kuipers E J . Autofluorescence endoscopy allows better differentiation than white light video colonoscopy in classifying adenomatous and non-adenomatous colorectal polyps. Gastrointestinal Endoscopy, 2009, 69(5): AB290
https://doi.org/10.1016/j.gie.2009.03.794
14 Luo X J, Zhang  B, Li J G ,  Luo X A ,  Yang L F . Autofluorescence spectroscopy for evaluating dysplasia in colorectal tissues. Zeitschrift fur Medizinische Physik, 2012, 22(1): 40–47
https://doi.org/10.1016/j.zemedi.2011.10.010 pmid: 22112637
15 Tajiri H. Autofluorescence endoscopy for the gastrointestinal tract. Proceedings of the Japan Academy Series B, Physical and biological sciences, 2007, 83(8): 248–255
https://doi.org/10.2183/pjab.83.248 pmid: 24367149
16 Aihara H, Sumiyama  K, Saito S ,  Tajiri H ,  Ikegami M . Numerical analysis of the autofluorescence intensity of neoplastic and non-neoplastic colorectal lesions by using a novel videoendoscopy system. Gastrointestinal Endoscopy, 2009, 69(3): 726–733
https://doi.org/10.1016/j.gie.2008.10.044 pmid: 19251018
17 Hirayama A, Kami  K, Sugimoto M ,  Sugawara M ,  Toki N, Onozuka  H, Kinoshita T ,  Saito N ,  Ochiai A ,  Tomita M ,  Esumi H ,  Soga T. Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Research, 2009, 69(11): 4918–4925
https://doi.org/10.1158/0008-5472.CAN-08-4806 pmid: 19458066
18 Lunt S Y, Vander Heiden  M G. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annual Review of Cell and Developmental Biology, 2011, 27(1): 441–464
https://doi.org/10.1146/annurev-cellbio-092910-154237 pmid: 21985671
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed