|
|
Accounting for speed of sound variations in volumetric hand-held optoacoustic imaging |
X. Luís DEÁN-BEN1, Ali ÖZBEK1, Daniel RAZANSKY1,2( ) |
1. Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany 2. School of Medicine and School of Bioengineering, Technical University of Munich, Munich, Germany |
|
|
Abstract Hand-held implementations of recently introduced real-time volumetric tomography approaches represent a promising path toward clinical translation of the optoacoustic technology. To this end, rapid acquisition of optoacoustic image data with spherical matrix arrays has attained exquisite visualizations of three-dimensional vascular morphology and function deep in human tissues. Nevertheless, significant reconstruction inaccuracies may arise from speed of sound (SoS) mismatches between the imaged tissue and the coupling medium used to propagate the generated optoacoustic responses toward the ultrasound sensing elements. Herein, we analyze the effects of SoS variations in three-dimensional hand-held tomographic acquisition geometries. An efficient graphics processing unit (GPU)-based reconstruction framework is further proposed to mitigate the SoS-related image quality degradation without compromising the high-frame-rate volumetric imaging performance of the method, essential for real-time visualization during hand-held scans.
|
Keywords
speed of sound (SoS)
graphics processing unit (GPU)
|
Corresponding Author(s):
Daniel RAZANSKY
|
Just Accepted Date: 22 August 2017
Online First Date: 14 September 2017
Issue Date: 26 September 2017
|
|
1 |
Dean-Ben X L, Razansky D. Adding fifth dimension to optoacoustic imaging: volumetric time-resolved spectrally enriched tomography. Light, Science & Applications, 2014,3(1): e137
|
2 |
Buehler A, Kacprowicz M, Taruttis A, Ntziachristos V. Real-time handheld multispectral optoacoustic imaging. Optics Letters, 2013, 38(9): 1404–1406
https://doi.org/10.1364/OL.38.001404
pmid: 23632499
|
3 |
Taruttis A, Ntziachristos V. Advances in real-time multispectral optoacoustic imaging and its applications. Nature Photonics, 2015, 9(4): 219–227
https://doi.org/10.1038/nphoton.2015.29
|
4 |
Wang L V, Yao J. A practical guide to photoacoustic tomography in the life sciences. Nature Methods, 2016, 13(8): 627–638
https://doi.org/10.1038/nmeth.3925
pmid: 27467726
|
5 |
Stoffels I, Morscher S, Helfrich I, Hillen U, Leyh J, Burton N C, Sardella T C, Claussen J, Poeppel T D, Bachmann H S, Roesch A, Griewank K, Schadendorf D, Gunzer M, Klode J. Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging. Science Translational Medicine, 2015, 7(317): 317ra199
https://doi.org/10.1126/scitranslmed.aad1278
pmid: 26659573
|
6 |
Deán-Ben X L, Merčep E, Razansky D. Hybrid-array-based optoacoustic and ultrasound (OPUS) imaging of biological tissues. Applied Physics Letters, 2017, 110(20): 203703
https://doi.org/10.1063/1.4983462
|
7 |
Kim C, Erpelding T N, Jankovic L, Pashley M D, Wang L V. Deeply penetrating in vivo photoacoustic imaging using a clinical ultrasound array system. Biomedical Optics Express, 2010, 1(1): 278–284
https://doi.org/10.1364/BOE.1.000278
pmid: 21258465
|
8 |
Fronheiser M P, Ermilov S A, Brecht H P, Conjusteau A, Su R, Mehta K, Oraevsky A A. Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature. Journal of Biomedical Optics, 2010, 15(2): 021305
https://doi.org/10.1117/1.3370336
pmid: 20459227
|
9 |
Piras D, Grijsen C, Schütte P, Steenbergen W, Manohar S. Photoacoustic needle: minimally invasive guidance to biopsy. Journal of Biomedical Optics, 2013, 18(7): 070502
https://doi.org/10.1117/1.JBO.18.7.070502
pmid: 23817760
|
10 |
Deán-Ben X L, Razansky D. On the link between the speckle free nature of optoacoustics and visibility of structures in limited-view tomography. Photoacoustics, 2016, 4(4): 133–140
https://doi.org/10.1016/j.pacs.2016.10.001
pmid: 28066714
|
11 |
Neuschmelting V, Burton N C, Lockau H, Urich A, Harmsen S, Ntziachristos V, Kircher M F. Performance of a multispectral optoacoustic tomography (MSOT) system equipped with 2D vs. 3D handheld probes for potential clinical translation. Photoacoustics, 2016, 4(1): 1–10
https://doi.org/10.1016/j.pacs.2015.12.001
pmid: 27069872
|
12 |
Mercep E, Dean Ben X L, Razansky D. Combined pulse-echo ultrasound and multispectral optoacoustic tomography with a multi-segment detector array. IEEE Transactions on Medical Imaging, 2017, doi: 10.1109/TMI.2017.2706200
https://doi.org/10.1109/TMI.2017.2706200
pmid: 28541198
|
13 |
Deán-Ben X L, Ntziachristos V, Razansky D. Artefact reduction in optoacoustic tomographic imaging by estimating the distribution of acoustic scatterers. Journal of Biomedical Optics, 2012, 17(11): 110504
https://doi.org/10.1117/1.JBO.17.11.110504
pmid: 23096956
|
14 |
Deán-Ben X L, Ma R, Rosenthal A, Ntziachristos V, Razansky D. Weighted model-based optoacoustic reconstruction in acoustic scattering media. Physics in Medicine and Biology, 2013, 58(16): 5555–5566
https://doi.org/1088/0031-9155/58/16/5555
pmid: 23892587
|
15 |
Treeby B E. Acoustic attenuation compensation in photoacoustic tomography using time-variant filtering. Journal of Biomedical Optics, 2013, 18(3): 036008
https://doi.org/10.1117/1.JBO.18.3.036008
pmid: 23503580
|
16 |
Huang C, Nie L, Schoonover R W, Wang L V, Anastasio M A. Photoacoustic computed tomography correcting for heterogeneity and attenuation. Journal of Biomedical Optics, 2012, 17(6): 061211
https://doi.org/10.1117/1.JBO.17.6.061211
pmid: 22734741
|
17 |
Deán-Ben X L, Razansky D, Ntziachristos V. The effects of acoustic attenuation in optoacoustic signals. Physics in Medicine and Biology, 2011, 56(18): 6129–6148
https://doi.org/10.1088/0031-9155/56/18/021
pmid: 21873768
|
18 |
Modgil D, Anastasio M A, La Rivière P J. Image reconstruction in photoacoustic tomography with variable speed of sound using a higher-order geometrical acoustics approximation. Journal of Biomedical Optics, 2010, 15(2): 021308
https://doi.org/10.1117/1.3333550
pmid: 20459230
|
19 |
Deán-Ben X L, Ntziachristos V, Razansky D. Effects of small variations of speed of sound in optoacoustic tomographic imaging. Medical Physics, 2014, 41(7): 073301
https://doi.org/10.1118/1.4875691
pmid: 24989414
|
20 |
Wurzinger G, Nuster R, Paltauf G. Combined photoacoustic, pulse-echo laser ultrasound, and speed-of-sound imaging using integrating optical detection. Journal of Biomedical Optics, 2016, 21(8): 086010
https://doi.org/10.1117/1.JBO.21.8.086010
pmid: 27548772
|
21 |
Haltmeier M, Nguyen L V. Analysis of iterative methods in photoacoustic tomography with variable sound speed. SIAM Journal on Imaging Sciences, 2017, 10(2): 751–781
https://doi.org/10.1137/16M1104822
|
22 |
Li L, Zhu L R, Ma C, Lin L, Yao J J, Wang L D, Maslov K, Zhang R Y, Chen W Y, Shi J H, Wang L V. Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution. Nature Biomedical Engineering, 2017, 1(5): Art. No. 0071
|
23 |
Treeby B E, Cox B T. k-wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. Journal of Biomedical Optics, 2010, 15(2): 021314
https://doi.org/10.1117/1.3360308
pmid: 20459236
|
24 |
Huang C, Wang K, Nie L, Wang L V, Anastasio M A. Full-wave iterative image reconstruction in photoacoustic tomography with acoustically inhomogeneous media. IEEE Transactions on Medical Imaging, 2013, 32(6): 1097–1110
https://doi.org/10.1109/TMI.2013.2254496
pmid: 23529196
|
25 |
Szabo T L. Diagnostic ultrasound imaging inside out. Burlington, MA: Elsevier Academic Press, 2004, p. xxii, 549 p
|
26 |
Jose J, Willemink R G, Resink S, Piras D, van Hespen J C, Slump C H, Steenbergen W, van Leeuwen T G, Manohar S. Passive element enriched photoacoustic computed tomography (PER PACT) for simultaneous imaging of acoustic propagation properties and light absorption. Optics Express, 2011, 19(3): 2093–2104
https://doi.org/10.1364/OE.19.002093
pmid: 21369026
|
27 |
Xia J, Huang C, Maslov K, Anastasio M A, Wang L V. Enhancement of photoacoustic tomography by ultrasonic computed tomography based on optical excitation of elements of a full-ring transducer array. Optics Letters, 2013, 38(16): 3140–3143
https://doi.org/10.1364/OL.38.003140
pmid: 24104670
|
28 |
Treeby B E, Varslot T K, Zhang E Z, Laufer J G, Beard P C. Automatic sound speed selection in photoacoustic image reconstruction using an autofocus approach. Journal of Biomedical Optics, 2011, 16(9): 090501
pmid: 21950905
|
29 |
Mandal S, Nasonova E, Deán-Ben X L, Razansky D. Optimal self-calibration of tomographic reconstruction parameters in whole-body small animal optoacoustic imaging. Photoacoustics, 2014, 2(3): 128–136
https://doi.org/10.1016/j.pacs.2014.09.002
pmid: 25431756
|
30 |
Deán-Ben X L, Fehm T F, Gostic M, Razansky D. Volumetric hand-held optoacoustic angiography as a tool for real-time screening of dense breast. Journal of Biophotonics, 2016, 9(3): 253–259
pmid: 25966021
|
31 |
Deán-Ben X L, Ozbek A, Razansky D. Volumetric real-time tracking of peripheral human vasculature with GPU-accelerated three-dimensional optoacoustic tomography. IEEE Transactions on Medical Imaging, 2013, 32(11): 2050–2055
https://doi.org/10.1109/TMI.2013.2272079
pmid: 23846468
|
32 |
Xu M, Wang L V. Universal back-projection algorithm for photoacoustic computed tomography. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2005, 71(1 Pt 2): 016706
|
33 |
Deán-Ben X L, Razansky D. Portable spherical array probe for volumetric real-time optoacoustic imaging at centimeter-scale depths. Optics Express, 2013, 21(23): 28062–28071
https://doi.org/10.1364/OE.21.028062
pmid: 24514320
|
34 |
Peli E. Contrast in complex images. Journal of the Optical Society of America A, Optics and Image Science, 1990, 7(10): 2032–2040
https://doi.org/10.1364/JOSAA.7.002032
pmid: 2231113
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|