Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2017, Vol. 10 Issue (4) : 388-394    https://doi.org/10.1007/s12200-017-0747-z
RESEARCH ARTICLE
Waveform LiDAR signal denoising based on connected domains
Liyu SUN, Zhiwei DONG, Ruihuan ZHANG, Rongwei FAN, Deying CHEN()
National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150001, China
 Download: PDF(366 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The streak tube imaging light detection and ranging (LiDAR) is a new type of waveform sampling laser imaging radar whose echo signals are stripe images with a high frame rate. In this study, the morphological and statistical characteristics of stripe signals are analyzed in detail. Based on the concept of mathematical morphology denoising, connected domains are constructed in a noise-containing stripe image, and the noise is removed using the difference in connected domains area between signals and noises. It is shown that, for stripe signals, the proposed denoising method is significantly more efficient than Wiener filtering.

Keywords stripe signal      connected domain      denoising     
Corresponding Author(s): Deying CHEN   
Just Accepted Date: 30 October 2017   Online First Date: 29 November 2017    Issue Date: 21 December 2017
 Cite this article:   
Liyu SUN,Zhiwei DONG,Ruihuan ZHANG, et al. Waveform LiDAR signal denoising based on connected domains[J]. Front. Optoelectron., 2017, 10(4): 388-394.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-017-0747-z
https://academic.hep.com.cn/foe/EN/Y2017/V10/I4/388
Fig.1  Diagram of typical streak tube
Fig.2  Original stripe image
Fig.3  Flow diagram of connected domain method
Fig.4  Connected domain area graph
Fig.5  Denoised results for different threshold area
Fig.6  Denoised results of waveform sampling stripe signals. (a) Denoised result of Wiener filtering; (b) denoised result of connected domain method
denoising time/smean of rmean of SNR
connected domain method160.9953
Wiener filtering350.9643
Tab.1  Comparison of different denoising methods
Fig.7  Elevation maps of buildings. (a) Original points cloud before denoising; (b) denoised by Wiener filtering; (c) denoised by connected domain method
Fig.8  Elevation maps of flat ground. (a) Original points cloud before denoising; (b) denoised by Wiener filtering; (c) denoised by connected domain method
not denoisedWiener filteringconnected domain method
dispersion10.022.542.39
point density/m24.573.592.99
Tab.2  Dispersion and point density of flat ground in points cloud
1 Li Q, Wang Y, Wang Q, Li Z. Noise suppression algorithm of coherent ladar range image. Acta Optica Sinica, 2005, 25(05): 581–584
2 Li Q, Wang Q, Li Z, Li L, Jiang L. Image processing on laser imaging radar. Chinese Journal of Lasers, 2002, A29(09): 826–828
3 Gleckler A D, Gelbart A, Bowden J M. Multispectral and hyperspectral 3D imaging Lidar based upon the multipleslit streak tube imaging lidar. Proceedings of the Society for Photo-Instrumentation Engineers, 2001, 4377: 328–335 
https://doi.org/10.1117/12.440121
4 Gleckler A D, Gelbart A. Three-dimensional imaging polarimetry. Proceedings of the Society for Photo-Instrumentation Engineers, 2001, 4377: 175–185 
https://doi.org/10.1117/12.440106
5 Nevis A J. Automated processing for streak tube imaging lidar data. Proceedings of the Society for Photo-Instrumentation Engineers, 2003, 5089: 119–129 
https://doi.org/10.1117/12.501566
6 Gelbart A, Redman B C, Light R S, Schwartzlow C A, Griffis A J. Flash lidar based on multiple-slit streak tube imaging lidar. Proceedings of the Society for Photo-Instrumentation Engineers, 2002, 4723: 9–18 
https://doi.org/10.1117/12.476407
7 Sun J F, Liu D, Ge M D, Wang Q. Image pre-processing algorithm of underwater target for streak tube imaging lidar. Chinese Journal of Lasers, 2013, 40(07): 211–214
8 Sheng Y P, Sun J F, Xu D W. Application analysis of short-range ocean surface monitoring for streak tube imaging lidar. Electro-Optic Technology Application, 2012, (1): 34–36,70
9 Sun J F, Gao J, Wei J S, Wang Q. Research development of under-water detection imaging based on streak tube imaging lidar. Infrared and Laser Engineering, 2010, 39(05): 811–814
10 Li S N, Liu J B, Guang Y H, Zang J H, Wang Q. Maximum acquisition range calculation for multi-wavelength streak tube image lidar.   Acta Photonica Sinica, 2007, 36(S1): 106–109
11 Wei J S, Wang Q, Sun J F, Gao J. Experiment of four-dimensional imaging with single-slit streak tube lidar. Chinese Journal of Lasers, 2010, 37(5): 1231–1235 
https://doi.org/10.3788/CJL20103705.1231
12 Zhang J H, Li S N, Wang Q, Liu J B. Noise analyzing and processing of streak image for streak tube imaging lidar. Acta Photonica Sinica, 2008, 37(8): 1533–1538
13 Dong Z W, Zhang R H, Zhang W B. Noise features in streak tube lidar echo signal. Acta Optica Sinica, 2016, 36(09): 296–300
14 Dong Z W, Zhang W B, Fan R W. Streak tube principle lidar imaging simulation and experiment Infrared and Laser Engineering. Infrared and Laser Engineering, 2016, 45(07): 100–104
15 Gleckler A. Streak tube imaging lidar for electro-optic identification. In: Proceedings of 4th International Symposium on Technology and the Mine Problem, 2001
16 Redman B C, Griffis A J, Schibley E B. Streak tube imaging lidar (STIL) for 3-D imaging of terrestrial targets. In: Proceedings of the MSS Specialty Group on Active E-O Systems, 2000
17 Bian X D. Research on stripe image processing for three-dimensional laser mapping. Dissertation for the Master Degree. Harbin: Harbin Institute of Technology, 2015, 20–21
18 Lim J S. Two-Dimensional Signal and Image Processing. Englewood Cliffs, NJ: Prentice Hall, 1990
19 Fan J M. Design and application of the labeling algorithm of 8-adjacent connecting area for massive gray scale images. Dissertation for the Master Degree. Kaifeng: Henan University, 2015
20 Suzuki K, Horiba I, Sugie N. Linear-time connected-component labeling based on sequential local operations. Computer Vision and Image Understanding, 2003, 89(1): 1–23 
https://doi.org/10.1016/S1077-3142(02)00030-9
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed