Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2018, Vol. 11 Issue (2) : 189-198    https://doi.org/10.1007/s12200-018-0815-z
RESEARCH ARTICLE
Photonic properties of novel Yb3+ doped germanium-lead oxyfluoride glass-ceramics for laser cooling applications
Lauro J. Q. MAIA1,2(), Jyothis THOMAS3, Yannick LEDEMI4, Kummara V. KRISHNAIAH3, Denis SELETSKIY3, Younès MESSADDEQ4, Raman KASHYAP2,3()
1. Instituto de Física, Universidade Federal de Goiás, Av. Esperança 1533, Campus Samambaia, Goiânia, GO, 74690-900, Brazil
2. Department of Electrical Engineering, École Polytechnique de Montréal, P.O. Box 6079, Station Centre-ville, Montréal, QC, H3C 3A7, Canada
3. Department of Engineering Physics, École Polytechnique de Montréal, P.O. Box 6079, Station Centre-ville, Montréal, QC, H3C 3A7, Canada
4. Centre d'Optique, Photonique et Laser, 2375 Rue de la Terrasse, Université Laval, Québec, QC, G1V 0A6, Canada
 Download: PDF(367 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In recent years, our research group has developed and studied new rare-earth doped materials for the promising technology of solid-state laser cooling, which is based on anti-stokes fluorescence. To the best of our knowledge, our group is the only one in Canada leading the research into the properties of nanoparticles, glasses and glass-ceramics for optical refrigeration applications. In the present work, optical properties of 50GeO2-30PbF2-18PbO-2YbF3 glass-ceramics for laser cooling are presented and discussed as a function of crystallization temperature. Spectroscopic results show that samples have near infrared photoluminescence emission due to the 2F5/22F7/2 Yb3+ transition, centered at ~1016 nm with an excitation wavelength of 920 nm or 1011 nm, and the highest photoluminescence emission efficiency occurs for heat-treatment for 5 h at 350°C. The internal photoluminescence quantum yield varies between 99% and 80%, depending on the temperature of heat-treatment, being the most efficient under 1011 nm excitation. The 2F5/2 lifetime increases from 1.472 to 1.970 ms for heat treatments at 330°C to 350°C, respectively, due to energy trapping and the low phonon energy of the nanocrystals. The sample temperature dependence was measured with a fiber Bragg grating sensor, as a function of input pump laser wavelength and processing temperature. These measurements show that the heating process approaches near zero for an excitation wavelength between 1020 and 1030 nm, which is an indication that phonons are removed effectivelly from the glass-ceramic materials, and they can be used for optical laser cooling applications. On the other hand, the temperature increase as a function of input laser power into samples remains constant between 920 and 980 nm wavelength excitation, a temperature variation of 36 K/W (temperature of 58°C/W) was attained under excitation at 950 nm, showing a possible use for biomedical applications to be explored.

Keywords optical refrigeration      oxyfluoride glass-ceramics      Yb3+ doping      quantum yield      infrared emission      lifetime     
Corresponding Author(s): Lauro J. Q. MAIA,Raman KASHYAP   
Just Accepted Date: 18 May 2018   Online First Date: 25 June 2018    Issue Date: 04 July 2018
 Cite this article:   
Lauro J. Q. MAIA,Jyothis THOMAS,Yannick LEDEMI, et al. Photonic properties of novel Yb3+ doped germanium-lead oxyfluoride glass-ceramics for laser cooling applications[J]. Front. Optoelectron., 2018, 11(2): 189-198.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-018-0815-z
https://academic.hep.com.cn/foe/EN/Y2018/V11/I2/189
Fig.1  (a) Transmission spectra in the UV-Vis-NIR regions, and (b) absorption coefficient from 900 to 1150 nm of all glass-ceramics with different heat-treatment temperature. The length of samples was 2.5 mm
heat-treatment/°C refractive index (n) at 632.8 nm (±0.0005) Dn = nTEnTM at 632.8 nm refractive index (n) at 1308.2 nm (±0.0005) Dn = nTEnTM at 1308.2 nm
TE mode TM mode TE mode TM mode
GC-330°C/5 h 1.9768 1.9755 0.0013 1.9066 1.9035 0.0083
GC-350°C/5 h 1.9837 1.9819 0.0018 1.9260 1.9177 0.0031
GC-370°C/5 h 1.9959 1.9946 0.0013 1.9323 1.9286 0.0037
Tab.1  Refractive index values for all glass-ceramic samples at 632.8 and 1308.2 nm
Fig.2  Emission PL spectra for all glass-ceramic samples under excitation at (a) 920 nm and (b)1011 nm. (c) Emission PL decay curves of Yb3+ 2F5/22F7/2 transition for all samples under excitation at 920 nm (Symbols are experimental values and solid lines are the fitted curves)
heat-treatment/°C lExc/nm iQY (±5%) eQY (±5%) power/mW
GC-330°C/5 h 920 89 7 525±10
GC-350°C/5 h 920 80 11 525±10
GC-370°C/5 h 920 92 8 525±10
GC-330°C/5 h 1011 99 5 273±5
GC-350°C/5 h 1011 95 10 273±5
GC-370°C/5 h 1011 99 7 273±5
Tab.2  QY determined values for all samples under excitation at 920 nm and at 1011 nm as a functions of heat treatment
heat-treatment/°C lExc = 920 nm lExc = 980 nm lExc = 1011 nm lExc = 1030 nm
lifetime/ms adj. R2 lifetime/ms adj. R2 lifetime/ms adj. R2 lifetime/ms adj. R2
GC-330°C/5 h 1.470±0.002 0.9998 1.417±0.001 0.9997 1.404±0.001 0.9999 1.468±0.001 0.9997
GC-350°C/5 h 1.970±0.002 0.9999 1.960±0.002 0.9996 1.974±0.001 0.9999 1.947±0.001 0.9998
GC-370°C/5 h 1.900±0.002 0.9998 1.842±0.001 0.9999 1.863±0.001 0.9998 1.953±0.001 0.9998
input power into samples/mW 436±10 278±5 207±5 171±5
Tab.3  Lifetime values of Yb3+ 2F5/2 level and adjusted R-square values by monoexponential function fitting, obtained under different excitation wavelengths
Fig.3  (a) Temperature changes normalized by input pump power delivered onto samples as a function of wavelength for all glass-ceramic samples; (b) values of Fig. 2(a) normalized by the absorption coefficient from Fig. 1(b). The curves indicate that the minimum temperature was achieved for heat-treatment at 350°C sample, that net cooling could be probably be achieved at an excitation wavelength of 1030 nm, prevented by radiation trapping and inhomogeneous pumping. The minimum between 970 and 980 nm in Fig. 3(b) is around the higher absorption coefficient with the peak at 976 nm, as we can see in Fig. 1(b), for instance we have not an explanation on this behaviour and more studies should be performed, especially measurements as a function of excitation power
1 Pringsheim P. Zwei bemerkungen uber den unterschied von lumineszenz-undtemperaturstrahlung. Zecischrift fur Phisik, 1929, 57(11–12): 739–746
https://doi.org/10.1007/BF01340652
2 Kastler A. Quelques suggestions concernant la production optique et la détection optique d’une inégalité de population des niveaux de quantifigation spatiale des atomes - application à l’expérience de Stern et Gerlach et à la résonance magnétique. Journal de Physique et le Radium, 1950, 11(6): 255–265
https://doi.org/10.1051/jphysrad:01950001106025500
3 Yatsiv S. Anti-Stokes fluorescence as a Cooling Process. In: Singer J R, ed. Advances in Quantum Electronics. New York: Columbia University, 1961
4 Epstein R I, Buchwald M I, Edwards B C, Gosnell T R, Mungan C E. Observation of laser-induced fluorescent cooling of a solid. Nature, 1995, 377(6549): 500–503
https://doi.org/10.1038/377500a0
5 Sheik-Bahae M, Epstein R I. Optical refrigeration. Nature Photonics, 2007, 1(12): 693–699
https://doi.org/10.1038/nphoton.2007.244
6 Epstein R I, Sheik-Bahae M. Optical Refrigeration: Science and Applications of Laser Cooling of Solids.Weinheim: Wiley-VCH, 2009
7 Sheik-Bahae M, Epstein R I. Can laser light cool semiconductors? Physical Review Letters, 2004, 92(24): 247403
https://doi.org/10.1103/PhysRevLett.92.247403 pmid: 15245131
8 Finkeißen E, Potemski M, Wyder P, Vina L, Weimann G. Cooling of a semiconductor by luminescence up-conversion. Applied Physics Letters, 1999, 75(9): 1258–1260
https://doi.org/10.1063/1.124660
9 De Lima Filho E S, Gagné M, Nemova G, Saad M, Bowman S R, Kashyap R. Sensing of laser cooling with optical fibres. In: Proceedings of 7th International Workshop on Fibre Optics and Passive Components. Montreal, QC, Canada: IEEE, 2011, 1–7
10 De Lima Filho E S, Nemova G, Loranger S, Kashyap R. Laser-induced cooling of a Yb:YAG crystal in air at atmospheric pressure. Optics Express, 2013, 21(21): 24711–24720
https://doi.org/10.1364/OE.21.024711 pmid: 24150315
11 De Lima Filho E S, Nemova G, Loranger S, Kashyap R. Direct measurement of laser cooling of Yb:YAG crystal at atmospheric pressure using a fiber bragg grating. In: Proceedings of SPIE Laser Refrigeration of Solids VII. San Francisco, California, USA: SPIE, 2014, 90000I
https://doi.org/10.1117/12.2040088
12 Nemova G, Kashyap R. Optimization of optical refrigaration in Yb3+:YAG samples. Journal of Luminescence, 2015, 164: 99–104
https://doi.org/10.1016/j.jlumin.2015.03.024
13 Nemova G, De Lima Filho E S, Loranger S, Kashyap R. Laser cooling with nanoparticles. In: Proceedings of Photonics North.Montréal, Canada: SPIE, 2012, 84121P
https://doi.org/10.1117/12.2001317
14 Nemova G, Kashyap R. Laser cooling with Tm3+-doped oxy-fluoride glass ceramic. Journal of the Optical Society of America B, Optical Physics, 2012, 29(11): 3034–3038
https://doi.org/10.1364/JOSAB.29.003034
15 Filho E S, Krishnaiah K V, Ledemi Y, Yu Y J, Messaddeq Y, Nemova G, Kashyap R. Ytterbium-doped glass-ceramics for optical refrigeration. Optics Express, 2015, 23(4): 4630–4640
https://doi.org/10.1364/OE.23.004630 pmid: 25836500
16 Krishnaiah K V, Ledemi Y, De Lima Filho E S, Messaddeq Y, Kashyap R. Nanocrystallization in Yb3+-doped oxyfluoride glasses for laser cooling. In: Proceedings of SPIE Laser Refrigeration of Solids VIII.San Francisco, California, USA: SPIE, 2015, 93800P doi:10.1117/12.2079459
17 Krishnaiah K V, Ledemi Y, De Lima Filho E S, Loranger S, Nemova G, Messaddeq Y, Kashyap R. Progress in rare-earth-doped nanocrystalline glass-ceramics for laser cooling. In: Proceedings of SPIE Optical and Electronic Cooling of Solids. San Francisco, California, USA: SPIE, 2016, 97650L
https://doi.org/10.1117/12.2213133
18 Krishnaiah K V, De Lima Filho E S, Ledemi Y, Nemova G, Messaddeq Y, Kashyap R. Development of ytterbium-doped oxyfluoride glasses for laser cooling applications. Scientific Reports, 2016, 6(1): 21905
https://doi.org/10.1038/srep21905 pmid: 26915817
19 Krishnaiah K V, Ledemi Y, Genevois C, Veron E, Sauvage X, Morency S, De Lima Filho E S, Nemova G, Allix M, Messaddeq Y, Kashyap R. Ytterbium-doped oxyfluoride nano-glass-ceramic fibers for laser cooling. Optical Materials Express, 2017, 7(6): 1980–1994
https://doi.org/10.1364/OME.7.001980
20 Maia L J Q, Thomas J, Krishnaiah K V, Ledemi Y, Seletskiy D, Messaddeq Y, Kashyap R. Structural and optical characterizations of Yb3+ doped GeO2-PbF2-PbO glass-ceramics for optical refrigeration. In: Proceedings of SPIE Optical and Electronic Cooling of Solids III .San Francisco, California, USA: SPIE, 2018, 105500O doi:10.1117/12.2314234
21 Dantelle G, Mortier M, Patriarche G, Vivien D. Er3+-doped PbF2: comparison between nanocrystals in glass-ceramics and bulk single crystals. Journal of Solid State Chemistry, 2006, 179(7): 1995–2003
https://doi.org/10.1016/j.jssc.2006.03.038
22 Bohren C F, Huffman D F. Absorption and Scattering of Light by Small Particles. New York: Wiley, 1983
23 Fujita S, Sakamoto A, Tanabe S. Luminescence characteristics of YAG glass–ceramic phosphor for white LED. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(5): 1387–1391
https://doi.org/10.1109/JSTQE.2008.920285
24 Wrighton M S, Ginley D S, Morse D L. A technique for the determination of absolute emission quantum yields of powdered samples. Journal of Physical Chemistry, 1974, 78(22): 2229–2233
https://doi.org/10.1021/j100615a009
25 Guimarães V F, Maia L J Q, Gautier-Luneau I, Bouchard C, Hernandes A C, Thomas F, Ferrier A, Viana B, Ibanez A. Toward a new generation of white phosphors for solid state lighting using glassy yttrium aluminoborates. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2015, 3(22): 5795–5802
https://doi.org/10.1039/C5TC00237K
26 Sumida D S, Fan T Y. Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media. Optics Letters, 1994, 19(17): 1343–1345
https://doi.org/10.1364/OL.19.001343 pmid: 19855515
27 Dai S, Yang J, Wen L, Hu L, Jiang Z. Effect of radiative trapping on measurement of the spectroscopic properties of Yb3+: phosphate glasses. Journal of Luminescence, 2003, 104(1-2): 55–63
https://doi.org/10.1016/S0022-2313(02)00664-6
28 Righini G C, Ferrari M. Photoluminescence of rare-earth-doped glasses. Rivista del Nuovo Cimento, 2005, 28: 1–53
29 Bueno L A, Gouveia-Neto A S, da Costa E B, Messaddeq Y, Ribeiro S J L. Structural and spectroscopic study of oxyfluoride glasses and glass-ceramics using europium ion as a structural probe. Journal of Physics Condensed Matter, 2008, 20(14): 145201
https://doi.org/10.1088/0953-8984/20/14/145201
30 Pan Z, Ueda A, Mu R, Morgan S H. Upconversion luminescence in Er3+-doped germanate-oxyfluoride and tellurium-germanate-oxyfluoride transparent glass-ceramics. Journal of Luminescence, 2007, 126(1): 251–256
https://doi.org/10.1016/j.jlumin.2006.07.021
[1] Chao CHEN,David C. BOBELA,Ye YANG,Shuaicheng LU,Kai ZENG,Cong GE,Bo YANG,Liang GAO,Yang ZHAO,Matthew C. BEARD,Jiang TANG. Characterization of basic physical properties of Sb2Se3 and its relevance for photovoltaics[J]. Front. Optoelectron., 2017, 10(1): 18-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed