Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2018, Vol. 11 Issue (4) : 407-412    https://doi.org/10.1007/s12200-018-0845-6
RESEARCH ARTICLE
Proposal for CEP measurement based on terahertz air photonics
Kejia WANG, Xinyang GU, Jinsong LIU, Zhengang YANG, Shenglie WANG()
Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic information, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(316 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Single-shot carrier envelope phase (CEP) measurement is a challenge in the research field of ultrafast optics. We theoretically investigate how an intense terahertz pulse modulates second harmonic emission (SH) from a gas plasma induced by a few-cycle laser pulse (FCL). Results show that the modulation quantity of SH intensity has a cosinoidal dependence on the CEP of FCL pulses, based on which we propose a low energy, all-optical method for single-shot CEP measurements via using a known intense terahertz pulse. Moreover, we propose an experimental realization.

Keywords ultrafast measurements      far-infrared or terahertz      ultrafast nonlinear optics      harmonic generation and mixing     
Corresponding Author(s): Shenglie WANG   
Just Accepted Date: 14 September 2018   Online First Date: 23 October 2018    Issue Date: 21 December 2018
 Cite this article:   
Kejia WANG,Xinyang GU,Jinsong LIU, et al. Proposal for CEP measurement based on terahertz air photonics[J]. Front. Optoelectron., 2018, 11(4): 407-412.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-018-0845-6
https://academic.hep.com.cn/foe/EN/Y2018/V11/I4/407
Fig.1  (a) and (b) Time variation of the electric field of the FCL pulses withφCEP = 0, π, ±π /2, respectively; (c)−(e) illustrations of the symmetries between FCL pulses with different CEP
Fig.2  (a) Dependence of the SH emission intensity on the CEP with and without intense THz pulse irradiation; (b) ΔI 2ω 0 versus CEP
Fig.3  Time dependence of polarized ionization rates r(t) for the gas plasma induced by FCL pulses without and with a THz field of 1 MV/cm (denoted by T) for (a) φ CEP =0, π and (b) ±π/ 2
Fig.4  (a) Time dependence of r (t) for φCEP =±π /2 (brown and purple line) and those with a fixed phase shift φS =π/4(solid line); (b) THz field-induced SH increment Δ I2 ω0Tversus the CEP for φS =0 (black line) and π /4(green line)
Fig.5  (a) Experimental realization for our proposed single-shot CEP measurement method; (b) and (c) distributions of a large number of shots from a non-phase-stabilized laser depicted on a two-dimensional parametric plot with THz field-induced increment signals from channel 1 (C1) and channel 2 (C2) for the horizontal and vertical axes, respectively
1 HHamster, A Sullivan, SGordon, WWhite, R WFalcone. Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Physical Review Letters, 1993, 71(17): 2725–2728
https://doi.org/10.1103/PhysRevLett.71.2725 pmid: 10054760
2 D JCook, R M Hochstrasser. Intense terahertz pulses by four-wave rectification in air. Optics Letters, 2000, 25(16): 1210–1212
https://doi.org/10.1364/OL.25.001210 pmid: 18066171
3 JDai, X Xie, X CZhang. Detection of broadband terahertz waves with a laser-induced plasma in gases. Physical Review Letters, 2006, 97(10): 103903
https://doi.org/10.1103/PhysRevLett.97.103903 pmid: 17025819
4 H GRoskos, M D Thomson, M Kreß, TLöffler. Broadband THz emission from gas plasmas induced by femtosecond optical pulses: from fundamentals to applications. Laser & Photonics Reviews, 2007, 1(4): 349–368
https://doi.org/10.1002/lpor.200710025
5 K YKim, J H Glownia, A J Taylor, G Rodriguez. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields. Optics Express, 2007, 15(8): 4577–4584
https://doi.org/10.1364/OE.15.004577 pmid: 19532704
6 NKarpowicz, J Dai, XLu, YChen, M Yamaguchi, HZhao, X CZhang, LZhang, CZhang, MPrice-Gallagher, CFletcher, OMamer, ALesimple, KJohnson. Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”. Applied Physics Letters, 2008, 92(1): 011131
https://doi.org/10.1063/1.2828709
7 K YKim. Generation of coherent terahertz radiation in ultrafast laser-gas interactions. Physics of Plasmas, 2009, 16(5): 056706
https://doi.org/10.1063/1.3134422
8 JDai, N Karpowicz, X CZhang. Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma. Physical Review Letters, 2009, 103(2): 023001
https://doi.org/10.1103/PhysRevLett.103.023001 pmid: 19659200
9 T JWang, C Marceau, YChen, SYuan, F Théberge, MChâteauneuf, JDubois, S LChin. Terahertz emission from a dc-biased two-color femtosecond laser-induced filament in air. Applied Physics Letters, 2010, 96(21): 211113
https://doi.org/10.1063/1.3441004
10 IBabushkin, W Kuehn, CKöhler, SSkupin, LBergé, KReimann, MWoerner, JHerrmann, TElsaesser. Ultrafast spatiotemporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases. Physical Review Letters, 2010, 105(5): 053903
https://doi.org/10.1103/PhysRevLett.105.053903 pmid: 20867920
11 JDai, J Liu, X CZhang. Terahertz wave air photonics: terahertz wave generation and detection with laser-induced gas plasma. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(1): 183–190
https://doi.org/10.1109/JSTQE.2010.2047007
12 BClough, J Dai, X CZhang. Laser air photonics: beyond the terahertz gap. Materials Today, 2012, 15(1–2): 50–58
https://doi.org/10.1016/S1369-7021(12)70020-2
13 EMatsubara, M Nagai, MAshida. Ultrabroadband coherent electric field from far infrared to 200 THz using air plasma induced by 10 fs pulses. Applied Physics Letters, 2012, 101(1): 011105
https://doi.org/10.1063/1.4732524
14 HWang, K Wang, JLiu, HDai, Z Yang. Theoretical research on terahertz air-breakdown coherent detection with the transient photocurrent model. Optics Express, 2012, 20(17): 19264–19270
https://doi.org/10.1364/OE.20.019264 pmid: 23038567
15 JLiu, H Wang, KWang, ZYang, S Wang. Coherent detection of terahertz pulses via gas plasma induced by few-cycle laser pulses with fixed carrier envelope phase. Optics Letters, 2013, 38(7): 1104–1106
https://doi.org/10.1364/OL.38.001104 pmid: 23546258
16 T IOh, Y J Yoo, Y S You, K Y Kim. Generation of strong terahertz fields exceeding 8 MV/cm at 1 kHz and real-time beam profiling. Applied Physics Letters, 2014, 105(4): 041103
https://doi.org/10.1063/1.4891678
17 H AHafez, X Chai, AIbrahim, SMondal, DFérachou, XRopagnol, TOzaki. Intense terahertz radiation and their applications. Journal of Optics, 2016, 18(9): 093004
https://doi.org/10.1088/2040-8978/18/9/093004
18 EGoulielmakis, M Schultze, MHofstetter, V SYakovlev, JGagnon, MUiberacker, A LAquila, E MGullikson, D TAttwood, RKienberger, FKrausz, UKleineberg. Single-cycle nonlinear optics. Science, 2008, 320(5883): 1614–1617
https://doi.org/10.1126/science.1157846 pmid: 18566281
19 FKrausz, M Ivanov. Attosecond physics. Reviews of Modern Physics, 2009, 81(1): 163–234
https://doi.org/10.1103/RevModPhys.81.163
20 E JTakahashi, PLan, O D Mücke, Y Nabekawa, KMidorikawa. Nonlinear attosecond metrology by intense isolated attosecond pulses. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(5): 8800112
https://doi.org/10.1109/JSTQE.2015.2405899
21 T JYu, C H Nam. Carrier-envelope phase stabilization of femtosecond lasers by the direct locking method. Progress in Quantum Electronics, 2012, 36(4−6): 541–565
https://doi.org/10.1016/j.pquantelec.2012.10.002
22 P ARoos, X Li, R PSmith, J APipis, T MFortier, S TCundiff. Solid-state carrier-envelope phase stabilization via quantum interference control of injected photocurrents. Optics Letters, 2005, 30(7): 735–737
https://doi.org/10.1364/OL.30.000735 pmid: 15832922
23 KOsvay, M Görbe, CGrebing, GSteinmeyer. Bandwidth-independent linear method for detection of the carrier-envelope offset phase. Optics Letters, 2007, 32(21): 3095–3097
https://doi.org/10.1364/OL.32.003095 pmid: 17975608
24 TWittmann, B Horvath, WHelml, M GSchätzel, XGu, A L Cavalieri, G G Paulus, R Kienberger. Single-shot carrier–envelope phase measurement of few-cycle laser pulses. Nature Physics, 2009, 5(5): 357–362
https://doi.org/10.1038/nphys1250
25 AVernaleken, B Schmidt, MWolferstetter, T WHänsch, RHolzwarth, PHommelhoff. Carrier-envelope frequency stabilization of a Ti:sapphire oscillator using different pump lasers. Optics Express, 2012, 20(16): 18387–18396
https://doi.org/10.1364/OE.20.018387 pmid: 23038390
26 BPiglosiewicz, S Schmidt, D JPark, JVogelsang, PGroß, CManzoni, PFarinello, GCerullo, CLienau. Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures. Nature Photonics, 2014, 8(1): 37–42
https://doi.org/10.1038/nphoton.2013.288
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed