Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2020, Vol. 13 Issue (1) : 12-17    https://doi.org/10.1007/s12200-019-0941-2
RESEARCH ARTICLE
Holographic fabrication of octagon graded photonic super-crystal and potential applications in topological photonics
Oliver SALE1, Safaa HASSAN1, Noah HURLEY1, Khadijah ALNASSER1, Usha PHILIPOSE1, Hualiang ZHANG2, Yuankun LIN1,3()
1. Department of Physics, University of North Texas, Denton, TX 76203, USA
2. ECE Department, University of Massachusetts Lowell, Lowell, MA 01854, USA
3. Department of Electrical Engineering, University of North Texas, Denton, TX 76203, USA
 Download: PDF(1613 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Novel optical properties in graded photonic super-crystals can be further explored if new types of graded photonic super-crystals are fabricated. In this paper, we report holographic fabrication of graded photonic super-crystal with eight graded lattice clusters surrounding the central non-gradient lattices through pixel-by-pixel phase engineering in a spatial light modulator. The prospect of applications of octagon graded photonic super-crystal in topological photonics is discussed through photonic band gap engineering and coupled ring resonators.

Keywords 2D photonic crystal      graded photonic super-crystal      holographic fabrication      photonic band structure     
Corresponding Author(s): Yuankun LIN   
Online First Date: 23 September 2019    Issue Date: 03 April 2020
 Cite this article:   
Oliver SALE,Safaa HASSAN,Noah HURLEY, et al. Holographic fabrication of octagon graded photonic super-crystal and potential applications in topological photonics[J]. Front. Optoelectron., 2020, 13(1): 12-17.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-019-0941-2
https://academic.hep.com.cn/foe/EN/Y2020/V13/I1/12
Fig.1  (a) Designed phase pattern in a unit cell indicated by the solid red square. The pixels were assigned with different gray level pairs in checkerboard format in regions (I) and (II). Lines indicate the periodic unit for the diffraction. (b) Optical image of diffraction pattern of 532 nm laser from the phase pattern in SLM. 12 beams, indicated by red circles, pass through the Fourier filter for multi-beam interference. The cell-phone camera was tilted to avoid the back-reflection spots
Fig.2  Schematic of the optical setup for the holographic fabrication of octagon GPSC. The diffracted beams from the phase pattern displayed in SLM are filtered at the Fourier Plane and form interference patterns through 4f imaging system. θ1 and θ2 are the first order diffraction angles due to the periodic array of 2 pixels, 24 pixels, respectively. α1 and α2 (zenith angle) are the interfering angles of 1−4 beams and 5−12 beams in Fig. 1(b), respectively
Fig.3  (a) Simulated 12-beam interference pattern with 8 graded regions forming octagon and surrounding the central almost uniform region. The yellow square indicates the unit super-cell. (b) Scanning electron microscope (SEM) image of a fabricated sample where the 8 graded regions are connected by a dashed red octagon. The solid red square indicates the unit super-cell and both squares indicate a square symmetry. A lattice spacing parameter L = 4 µm. (c) Diffraction pattern of fabricated sample from 532 nm laser. An insert inside the dashed white square is a copy of pattern in the central region with 5 squares for eye guidance purpose. The yellow octagon is for eye guidance
Fig.4  (a) and (b) Simulated electric field distributions in the boundary of graded and uniform regions. (c) Possible side and link ring formation in octagon GPSCs
1 D Chanda, L E Abolghasemi, M Haque, M L Ng, P R Herman. Multi-level diffractive optics for single laser exposure fabrication of telecom-band diamond-like 3-dimensional photonic crystals. Optics Express, 2008, 16(20): 15402–15414
https://doi.org/10.1364/OE.16.015402 pmid: 18825176
2 K Ohlinger, H Zhang, Y Lin, D Xu, K P Chen. A tunable three layer phase mask for single laser exposure 3D photonic crystal generations: bandgap simulation and holographic fabrication. Optical Materials Express, 2011, 1(5): 1034–1039
https://doi.org/10.1364/OME.1.001034
3 J Leach, K Wulff, G Sinclair, P Jordan, J Courtial, L Thomson, G Gibson, K Karunwi, J Cooper, Z J Laczik, M Padgett. Interactive approach to optical tweezers control. Applied Optics, 2006, 45(5): 897–903
https://doi.org/10.1364/AO.45.000897 pmid: 16512531
4 J Xavier, R Dasgupta, S Ahlawat, J Joseph, P K Gupta. Three dimensional optical twisters-driven helically-stacked multi-layered microrotors. Applied Physics Letters, 2012, 100(12): 121101
https://doi.org/10.1063/1.3693413
5 G Zito, B Piccirillo, E Santamato, A Marino, V Tkachenko, G Abbate. Two-dimensional photonic quasicrystals by single beam computer-generated holography. Optics Express, 2008, 16(8): 5164–5170
https://doi.org/10.1364/OE.16.005164 pmid: 18542617
6 N J Jenness, K D Wulff, M S Johannes, M J Padgett, D G Cole, R L Clark. Three-dimensional parallel holographic micropatterning using a spatial light modulator. Optics Express, 2008, 16(20): 15942–15948
https://doi.org/10.1364/OE.16.015942 pmid: 18825231
7 V Arrizón, D S de-la-Llave, G Méndez, U Ruiz. Efficient generation of periodic and quasi-periodic non-diffractive optical fields with phase holograms. Optics Express, 2011, 19(11): 10553–10562
https://doi.org/10.1364/OE.19.010553 pmid: 21643309
8 J Xavier, P Rose, B Terhalle, J Joseph, C Denz. Three-dimensional optically induced reconfigurable photorefractive nonlinear photonic lattices. Optics Letters, 2009, 34(17): 2625–2627
https://doi.org/10.1364/OL.34.002625 pmid: 19724512
9 J Xavier, J Joseph. Tunable complex photonic chiral lattices by reconfigurable optical phase engineering. Optics Letters, 2011, 36(3): 403–405
https://doi.org/10.1364/OL.36.000403 pmid: 21283204
10 J Xavier, S Vyas, P Senthilkumaran, C Denz, J Joseph. Sculptured 3D twister superlattices embedded with tunable vortex spirals. Optics Letters, 2011, 36(17): 3512–3514
https://doi.org/10.1364/OL.36.003512 pmid: 21886261
11 S Behera, J Joseph. Single-step optical realization of bio-inspired dual-periodic motheye and gradient-index-array photonic structures. Optics Letters, 2016, 41(15): 3579–3582
https://doi.org/10.1364/OL.41.003579 pmid: 27472623
12 J Lutkenhaus, D George, M Moazzezi, U Philipose, Y Lin. Digitally tunable holographic lithography using a spatial light modulator as a programmable phase mask. Optics Express, 2013, 21(22): 26227–26235
https://doi.org/10.1364/OE.21.026227 pmid: 24216847
13 M Kumar, J Joseph. Optical generation of a spatially variant two-dimensional lattice structure by using a phase only spatial light modulator. Applied Physics Letters, 2014, 105(5): 051102
https://doi.org/10.1063/1.4892447
14 R C Rumpf, J Pazos. Synthesis of spatially variant lattices. Optics Express, 2012, 20(14): 15263–15274
https://doi.org/10.1364/OE.20.015263 pmid: 22772224
15 J L Digaum, J J Pazos, J Chiles, J D’Archangel, G Padilla, A Tatulian, R C Rumpf, S Fathpour, G D Boreman, S M Kuebler. Tight control of light beams in photonic crystals with spatially-variant lattice orientation. Optics Express, 2014, 22(21): 25788–25804
https://doi.org/10.1364/OE.22.025788 pmid: 25401613
16 J Lutkenhaus, D George, D Lowell, B Arigong, H Zhang, Y Lin. Registering functional defects into periodic holographic structures. Applied Optics, 2015, 54(23): 7007–7012
https://doi.org/10.1364/AO.54.007007 pmid: 26368368
17 J Lutkenhaus, D Lowell, D George, H Zhang, Y Lin. Holographic fabrication of designed functional defect lines in photonic crystal lattice using a spatial light modulator. Micromachines, 2016, 7(4): 59
https://doi.org/10.3390/mi7040059 pmid: 30407432
18 D Lowell, J Lutkenhaus, D George, U Philipose, B Chen, Y Lin. Simultaneous direct holographic fabrication of photonic cavity and graded photonic lattice with dual periodicity, dual basis, and dual symmetry. Optics Express, 2017, 25(13): 14444–14452
https://doi.org/10.1364/OE.25.014444 pmid: 28789030
19 D Lowell, S Hassan, O Sale, M Adewole, N Hurley, U Philipose, B Chen, Y Lin. Holographic fabrication of graded photonic super-quasi-crystals with multiple-level gradients. Applied Optics, 2018, 57(22): 6598–6604
https://doi.org/10.1364/AO.57.006598 pmid: 30117901
20 D Lowell, S Hassan, M Adewole, U Philipose, B Chen, Y Lin. Holographic fabrication of graded photonic super-crystals using an integrated spatial light modulator and reflective optical element laser projection system. Applied Optics, 2017, 56(36): 9888
https://doi.org/10.1364/AO.56.009888
21 S Hassan, O Sale, D Lowell, N Hurley, Y Lin. Holographic fabrication and optical property of graded photonic super-crystals with a rectangular unit super-cell. Photonics, 2018, 5(4): 34
https://doi.org/10.3390/photonics5040034
22 X Ge, M Minkov, S Fan, X Li, W Zhou. Low index contrast heterostructure photonic crystal cavities with high quality factors and vertical radiation coupling. Applied Physics Letters, 2018, 112(14): 141105
https://doi.org/10.1063/1.5026433
23 S Hassan, D Lowell, Y Lin. High light extraction efficiency into glass substrate in organic light-emitting diodes by patterning the cathode in graded superlattice with dual periodicity and dual basis. Journal of Applied Physics, 2017, 121(23): 233104
https://doi.org/10.1063/1.4986233
24 S Hassan, K Alnasser, D Lowell, Y Lin. Effects of photonic band structure and unit super-cell size in graded photonic super-crystal on broadband light absorption in silicon. Photonics, 2019, 6(2): 50
https://doi.org/10.3390/photonics6020050
25 L Lu, J D Joannopoulos, M Soljačić. Topological photonics. Nature Photonics, 2014, 8(11): 821–829
https://doi.org/10.1038/nphoton.2014.248
26 M A Bandres, S Wittek, G Harari , M Parto, J Ren, M Segev, D N Christodoulides, M Khajavikhan. Topological insulator laser: experiments. Science, 2018, 359: 4005
27 Y Ao, X Hu, C Li, Y You, Q Gong. Topological properties of coupled resonator array based on accurate band structure. Physical Review Materials, 2018, 2(10): 105201
https://doi.org/10.1103/PhysRevMaterials.2.105201
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed