Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2021, Vol. 14 Issue (3) : 352-359    https://doi.org/10.1007/s12200-020-0964-8
RESEARCH ARTICLE
Characteristics of laser induced discharge tin plasma and its extreme ultraviolet radiation
Junwu WANG(), Xinbing WANG, Duluo ZUO
Wuhan National Research Center for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(1253 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, a CO2 laser induced discharge plasma extreme ultraviolet (EUV) source experimental device was established. The optical emission spectroscopy was used to diagnose the characteristics of the plasma, and the evolution of electron temperature and electron density with time was obtained. The influence of discharge voltage on plasma parameters was analyzed and discussed. The EUV radiation characteristics of the plasma were investigated by self-made grazing incidence EUV spectrometer. The EUV radiation intensity and conversion efficiency were discussed.

Keywords extreme ultraviolet (EUV) radiation      laser induced discharge plasma      optical emission spectroscopy      electron temperature and density     
Corresponding Author(s): Junwu WANG   
Just Accepted Date: 19 March 2020   Online First Date: 13 April 2020    Issue Date: 30 September 2021
 Cite this article:   
Junwu WANG,Xinbing WANG,Duluo ZUO. Characteristics of laser induced discharge tin plasma and its extreme ultraviolet radiation[J]. Front. Optoelectron., 2021, 14(3): 352-359.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-020-0964-8
https://academic.hep.com.cn/foe/EN/Y2021/V14/I3/352
Fig.1  LDP OES and EUV spectra detection experimental setup
Fig.2  (a) Waveforms of the discharge voltage and current; and laser induced discharge visible spectra at different times: (b) 200 ns; (c) 800 ns; (d) 2000 ns
Fig.3  LDP visible spectra with different voltages
Fig.4  (a) Boltzmann plot for electron temperature calculating; (b) electron temperatures and current waveforms versus time under different condition of discharge voltage
Fig.5  (a) Voigt line fitting of Stark broadening for electron density calculating; (b) electron densities and current waveforms versus time under different condition of discharge voltage
Fig.6  Average ionized states with different voltages
Fig.7  LPP EUV spectra with different voltages
Fig.8  Relationship between solid Sn EUV spectral intensity and discharge energy
1 C Wagner, N Harned. Lithography gets extreme. Nature Photonics, 2010, 4(1): 24–26
https://doi.org/10.1038/nphoton.2009.251
2 M van de Kerkhof, H Jasper, L Levasier, R Peteers, R van Es, J Bosker, A Zdravkov, E Lenderink, F Evangelista, P Broman, B Bilski, T Last. Enabling sub-10 nm node lithography: presenting the NXE: 3400B EUV scanner. In: Proceedings of SPIE 10143, Extreme Ultraviolet (EUV) Lithography VIII. San Jose: SPIE, 2017, 101430D
https://doi.org/10.1117/12.2258025
3 H Meiling, N Buzing, K Cummings, N Harned, B Hultermans, R de Jonge, B Kessels, P Kürz, S Lok, M Lowisch, J Mallman, B Pierson, C Wagner, A van Dijk, E van Setten, J ZimmermSan an. EUVL system: moving towards production. In: Proceedings of SPIE 7271, Alternative Lithographic Technologies. San Jose: SPIE, 2009, 727102
4 G O’Sullivan, B Li, R D’Arcy, P Dunne, P Hayden, D Kilbane, T McCormack, H Ohashi, F O’Reilly, P Sheridan, E Sokell, C Suzuki, T Higashiguchi. Spectroscopy of highly charged ions and its relevance to EUV and soft X-ray source development. Journal of Physics B, Atomic, Molecular, and Optical Physics, 2015, 48(14): 144025
https://doi.org/10.1088/0953-4075/48/14/144025
5 I V Fomenkov, Al Ershov, W N Partlo, D W Myers, R L Sandstrom, N R Bowering, G O Vaschenko, O V Khodykin, A N Bykanov, S N Srivastava, I Ahmad, C Rajyaguru, D J Golich, S D Dea, R r Hou, K M O’Brien, W J Dunstan, D C Brandt. Laser-produced plasma light sources for EUVL. In: Proceedings of SPIE 7636, Extreme Ultraviolet (EUV) Lithography. San Jose: SPIE, 2010, 763639
6 E Hotta, Y Sakai, Y Hayashi, G Niimi, B Huang, Q S Zhu, I Song, M Watanabe. Extreme ultraviolet light sources and soft X-ray laser based on discharge produced plasma. In: Proceedings of SPIE 9524, International Conference on Optical and Photonic Engineering (icOPEN 2015). Singapore: SPIE, 2015, 95242U
7 U Stamm, J Kleinschmidt, D Bolshukhin, J Brudermann, G Hergenhan, V Korobotchko, B Nikolaus, M C Schürmann, G Schriever, C Ziener, V M Borisov. Development status of EUV sources for use in beta-tools and high-volume chip manufacturing tools. In: Proceedings of SPIE 6151. Emerging Lithographic Technologies X. San Jose: SPIE, 2006, 61510O
8 G A Beyene, I Tobin, L Juschkin, P Hayden, G O’Sullivan, E Sokell, V S Zakharov, S V Zakharov, F O’Reilly. Laser-assisted vacuum arc extreme ultraviolet source: a comparison of picosecond and nanosecond laser triggering. Journal of Physics D, Applied Physics, 2016, 49(22): 225201
https://doi.org/10.1088/0022-3727/49/22/225201
9 G Schriever, O Semprez, J Jonkers, M Yoshioka, R Apetz. Laser-produced plasma versus laser-assisted discharge plasma: physics and technology of extreme ultraviolet lithography light sources. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2012, 11(2): 021104
10 Y Teramoto, Z Narihiro, D Yamatani, T Yokoyama, K Bessho, Y Joshima. Development of Sn-fueled high-power DPP EUV source for enabling HVM. In: Proceedings of SPIE 6517, Emerging Lithographic Technologies XI. San Jose: SPIE, 2007, 65173R
11 Y Teramoto, B Santos, G Mertens, R Kops. High-radiance LDP source: clean, reliable, and stable EUV source for mask inspection. In: Proceedings of SPIE 9776, Extreme Ultraviolet (EUV) Lithography VII.San Jose: SPIE, 2016, 97760L
12 I Tobin, L Juschkin, Y Sidelnikov, F O’Reilly, P Sheridan, E Sokell, J G Lunney. Laser triggered Z-pinch broadband extreme ultraviolet source for metrology. Applied Physics Letters, 2013, 102(20): 203504
https://doi.org/10.1063/1.4807172
13 B Turkot, S L Carson, A Lio, T Liang, M Phillips, B McCool, E Stenehjem, T Crimmins, G J Zhang, S Sivakumar. EUV progress toward HVM readiness. In: Proceedings of SPIE 9776, Extreme Ultraviolet (EUV) Lithography VII.San Jose: SPIE, 2016, 977602
14 Y Teramoto, B Santos, G Mertens, R Kops. High-radiance LDP source for mask inspection application. In: Proceedings of SPIE 9048, Extreme Ultraviolet (EUV) Lithography V. San Jose: SPIE, 2014, 904813
15 Y Teramoto, B Santos, G Mertens, R Kops, M Kops, A von Wezyk, K Bergmann, H Yabuta, A Nagano, N Ashizawa, Y Taniguchi, D Yamatani, T Shirai, K Kasama. High-radiance LDP source for mask inspection and beam line applications. In: Proceedings of SPIE 10143, Extreme Ultraviolet (EUV) Lithography VIII. San Jose: SPIE, 2017, 101431L
16 N M Shaikh, Y Tao, R A Burdt, S Yuspeh, N Amin, M S Tillack. Spectroscopic analysis of temperature and density of Sn plasma produced by a CO2 laser. Journal of Applied Physics, 2010, 108(8): 083109
https://doi.org/10.1063/1.3475369
17 T Wu, X Wang, D Zuo, P Lu. Research of pulse CO2 laser produced tin plasma. In: Proceedings of SPIE 8603, High-Power Laser Materials Processing: Lasers, Beam Delivery, Diagnostics, and Applications II. San Francisco: SPIE, 2013, 86030Y
18 E R Kieft, J van der Mullen, G M W Kroesen, V Banine, K N Koshelev. Stark broadening experiments on a vacuum arc discharge in tin vapor. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2004, 70(6): 066402
https://doi.org/10.1103/PhysRevE.70.066402 pmid: 15697509
19 E R Kieft, J van der Mullen, G M W Kroesen, V Banine, K N Koshelev. Characterization of a vacuum-arc discharge in tin vapor using time-resolved plasma imaging and extreme ultraviolet spectrometry. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2005, 71(2): 026409
https://doi.org/10.1103/PhysRevE.71.026409 pmid: 15783431
20 Q Zhu, T Muto, J Yamada, N Kishi, M Watanabe, A Okino, K Horioka, E Hotta. Estimation of electron temperature and density of the decay plasma in a laser-assisted discharge plasma extreme ultraviolet source by using a modified Stark broadening method. Journal of Applied Physics, 2011, 110(12): 123302
https://doi.org/10.1063/1.3672816
21 I Tobin. Optical and EUV studied of laser triggered Z-pinch discharges. Dissertation for the Doctoral. Dublin, Ireland: Trinity College, 2014, 20–300
22 S Djeniže, A Srećković, Z Nikolić. On the Sn I and Sn II Stark broadening. Journal of Physics B, Atomic, Molecular, and Optical Physics, 2006, 39(14): 3037–30451
https://doi.org/0.1088/0953-4075/39/14/011
23 H R Griem. Semiempirical formulas for the electron-impact widths and shifts of isolated ion lines in plasmas. Physical Review, 1968, 165(1): 258–266
https://doi.org/10.1103/PhysRev.165.258
24 Ü Aydin, P Roth, C D Gehlen, R Noll. Spectral line selection for time-resolved investigations of laser-induced plasmas by an iterative Boltzmann plot method. Spectrochimica Acta Part B, Atomic Spectroscopy, 2008, 63(10): 1060–1065
https://doi.org/10.1016/j.sab.2008.08.003
25 M H Miller, R A Roig, R D Bengtson. Experimental transition probabilities and Stark-broadening parameters of neutral and singly ionized tin. Physical Review A, 1979, 20(2): 499–506
https://doi.org/10.1103/PhysRevA.20.499
26 R W Coons, S S Harilal, M Polek, A Hassanein. Spatial and temporal variations of electron temperatures and densities from EUV-emitting lithium plasmas. Analytical and Bioanalytical Chemistry, 2011, 400(10): 3239–3246
https://doi.org/10.1007/s00216-011-4792-y pmid: 21359572
27 Q Zhu, J Yamada, N Kishi, T Hosokai, M Watanabe, A Okino, K Horioka, E Hotta. Pinch dynamics of the 13.5 nm EUV-emitting plasma in a LA-DPP source. In: Proceedings of 2011 Academic International Symposium on Optoelectronics and Microelectronics Technology. Haerbin, 2011, 172–175
28 J Zhang, P J Gu. An approximate method for calculating ionization state of local thermodynamic equilibrium and nonlocal thermodynamic equilibrium plasma. Chinese Journal of Computational Physics, 1987, 4(1): 1–16 (in Chinese)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed