Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2021, Vol. 14 Issue (3) : 311-320    https://doi.org/10.1007/s12200-020-1006-2
RESEARCH ARTICLE
Preparation of shape-controlling VO2(M/R) nanoparticles via one-step hydrothermal synthesis
Yuchao LI1,2, Fengyu KONG3, Bin WANG4, Yanhua ZHAO2, Zuankai WANG1,2()
1. Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
2. Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
3. Ningbo University of Technology, Ningbo 315211, China
4. Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
 Download: PDF(3755 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this study, we developed a facile one-step hydrothermal process that allows to synthesize high-purity VO2(M/R) nanoparticles with various morphologies such as nanorods, nanogranules, nanoblocks, and nanospheres. W dopants are successfully implanted in VO2(M/R) unit cells with high doping efficiency, which allows to regulate the size, morphology, and phase of obtained nanoparticles. The underlying regulation mechanism is presented in detail to reveal how hydrothermal products vary with W doping contents, which provides a synthetic strategy for the preparation of shape-controlling VO2(M/R) nanoparticles with high purity to satisfy different specific demands for corresponding applications in the field of thermochromic smart windows.

Keywords one-step hydrothermal      W doping      shape-controlling      VO2(M/R) nanoparticles     
Corresponding Author(s): Zuankai WANG   
Just Accepted Date: 04 June 2020   Online First Date: 06 July 2020    Issue Date: 30 September 2021
 Cite this article:   
Yuchao LI,Fengyu KONG,Bin WANG, et al. Preparation of shape-controlling VO2(M/R) nanoparticles via one-step hydrothermal synthesis[J]. Front. Optoelectron., 2021, 14(3): 311-320.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-020-1006-2
https://academic.hep.com.cn/foe/EN/Y2021/V14/I3/311
Fig.1  Schematic diagram of the one-step hydrothermal synthesis of VO2 nanoparticles
W doping ratio/at%* weight/g
0 0
1.0 0.03758
2.0 0.07589
3.0 0.11274
4.0 0.15178
Tab.1  Contents of (NH4)5H5[H2(WO4)6] powder for different groups
Fig.2  Element mapping and surface spectrogram of VO2 nanoparticles prepared with the W doping ratio of 1.0 at%. (a) SEM images of nanoparticles. (b) Overall diagram of the key elements: yellow color for W element, red color for O element, and green color for V element. (c) W element. (d) O element. (e) V element. (f) Surface spectrogram of different elements in the range of 0–8 keV. Here, cps is counts per second
nominal W
doping ratio/at%*
actual W
doping ratio/at%*
elements atom% doping efficiency/%
0 0 O
V
W
64.33
35.67
0
0
1.0 0.91 O
V
W
66.74
32.96
0.30
91.0
2.0 1.47 O
V
W
63.82
35.65
0.53
73.5
3.0 2.16 O
V
W
65.36
33.89
0.75
72.0
4.0 2.72 O
V
W
64.74
34.30
0.96
68.0
Tab.2  Atomic percent of key elements in VO2 nanoparticles determined by EDS
Fig.3  Comparison of the nominal W and actual W doping content
Fig.4  XRD patterns of prepared nanoparticles with different W doping ratios (left) and a magnified view (right) of the XRD data in the range of 64°<2θ<66°
Fig.5  SEM images of the prepared nanoparticles without W dopants. (a) Hexagon nanoparticles and nanorods. (b) Snowflake nanoparticles
Fig.6  SEM images of prepared nanoparticles with the W doping ratio of 1.0 at% under different magnification. (a) ×5k. (b) ×20k
Fig.7  XPS spectrum of nanoparticles prepared with the W doping ratio of 1.0 at%. (a) General patterns. (b) V element. (c) W element. (d) O element
Fig.8  SEM images of nanoparticles prepared with the W doping ratio of 2.0 at% under different magnification. (a) ×5k. (b) ×10k
Fig.9  SEM images of nanoparticles prepared with the W doping ratio of 3.0 at% under different magnification. (a) ×5k. (b) ×30k
Fig.10  SEM images of nanoparticles prepared with the W doping ratio of 4.0 at% under different magnification. (a) ×5k. (b) ×15k
Fig.11  Overall schematic diagram of evolution of VO2 nanoparticles and regulation scheme
1 S A Corr, M Grossman, J D Furman, B C Melot, A K Cheetham, K R Heier, R Seshadri. Controlled reduction of vanadium oxide nanoscrolls: crystal structure, morphology, and electrical properties. Chemistry of Materials, 2008, 20(20): 6396–6404
https://doi.org/10.1021/cm801539f
2 Y Gao, S Wang, L Kang, Z Chen, J Du, X Liu, H Luo, M Kanehira. VO2–Sb:SnO2 composite thermochromic smart glass foil. Energy & Environmental Science, 2012, 5(8): 8234–8237
https://doi.org/10.1039/c2ee21119j
3 C Wu, X Zhang, J Dai, J Yang, Z Wu, S Wei, Y Xie. Direct hydrothermal synthesis of monoclinic VO2(M) single-domain nanorods on large scale displaying magnetocaloric effect. Journal of Materials Chemistry, 2011, 21(12): 4509–4517
https://doi.org/10.1039/c0jm03078c
4 A Paone, M Joly, R Sanjines, A Romanyuk, J L Scartezzini, A Schüler. Thermochromic films of VO2:W for smart solar energy applications. In: Proceedings of Optical Modeling and Measurements for Solar Energy Systems III. San Diego: International Society for Optics and Photonics, 2009, 7410: 74100F
5 M Li, S Magdassi, Y Gao, Y Long. Hydrothermal synthesis of VO2 polymorphs: advantages, challenges and prospects for the application of energy efficient smart windows. Small, 2017, 13(36): 1701147
https://doi.org/10.1002/smll.201701147 pmid: 28722273
6 Y Xu, W Huang, Q Shi, Y Zhang, J Wu, L Song. Porous nano-structured VO2 films with different surfactants: synthesis mechanisms, characterization, and applications. Journal of Materials Science Materials in Electronics, 2013, 24(10): 3823–3829
https://doi.org/10.1007/s10854-013-1324-x
7 M Taha, S Walia, T Ahmed, D Headland, W Withayachumnankul, S Sriram, M Bhaskaran. Insulator–metal transition in substrate-independent VO2 thin film for phase-change devices. Scientific Reports, 2017, 7(1): 17899
https://doi.org/10.1038/s41598-017-17937-3
8 Z Zhang, Y Gao, Z Chen, J Du, C Cao, L Kang, H Luo. Thermochromic VO2 thin films: solution-based processing, improved optical properties, and lowered phase transformation temperature. Langmuir, 2010, 26(13): 10738–10744
https://doi.org/10.1021/la100515k pmid: 20329789
9 S Li, Y Li, M Jiang, S Ji, H Luo, Y Gao, P Jin. Preparation and characterization of self-supporting thermochromic films composed of VO2(M)@SiO2 nanofibers. ACS Applied Materials & Interfaces, 2013, 5(14): 6453–6457
https://doi.org/10.1021/am401839d pmid: 23789577
10 F Wang, Y Liu, C Y Liu. Molten salt synthesis and localized surface plasmon resonance study of vanadium dioxide nanopowders. Journal of Solid State Chemistry, 2009, 182(12): 3249–3253
https://doi.org/10.1016/j.jssc.2009.09.014
11 C Zheng, X Zhang, J Zhang, K Liao. Preparation and characterization of VO2 nanopowders. Journal of Solid State Chemistry, 2001, 156(2): 274–280
https://doi.org/10.1006/jssc.2000.8952
12 C Wu, J Dai, X Zhang, J Yang, F Qi, C Gao, Y Xie. Direct confined-space combustion forming monoclinic vanadium dioxides. Angewandte Chemie International Edition, 2010, 49(1): 134–137
https://doi.org/10.1002/anie.200905227 pmid: 19943305
13 C Cao, Y Gao, H Luo. Pure single-crystal rutile vanadium dioxide powders: synthesis, mechanism and phase-transformation property. Journal of Physical Chemistry C, 2008, 112(48): 18810–18814
https://doi.org/10.1021/jp8073688
14 J H Son, J Wei, D Cobden, G Z Cao, Y N Xia. Hydrothermal synthesis of monoclinic VO2 micro-and nanocrystals in one step and their use in fabricating inverse opals. Chemistry of Materials, 2010, 22(10): 3043–3050
https://doi.org/10.1002/admi.201600164
15 L Whittaker, C Jaye, Z Fu, D A Fischer, S Banerjee. Depressed phase transition in solution-grown VO2 nanostructures. Journal of the American Chemical Society, 2009, 131(25): 8884–8894
https://doi.org/10.1021/ja902054w pmid: 19505072
16 K F Zhang, X Liu, Z X Su, H L Li. VO2(R) nanobelts resulting from the irreversible transformation of VO2(B) nanobelts. Materials Letters, 2007, 61(13): 2644–2647
https://doi.org/10.1016/j.matlet.2006.10.039
17 K C Kam, A K Cheetham. Thermochromic VO2 nanorods and other vanadium oxides nanostructures. Materials Research Bulletin, 2006, 41(5): 1015–1021
https://doi.org/10.1016/j.materresbull.2006.03.024
18 J Li, C Liu, L Mao. The character of W-doped one-dimensional VO2(M). Journal of Solid State Chemistry, 2009, 182(10): 2835–2839
https://doi.org/10.1016/j.jssc.2009.07.031
19 Z Gui, R Fan, W Mo, X Chen, L Yang, S Zhang, Y Hu, Z Wang, W Fan. Precursor morphology controlled formation of rutile VO2 nanorods and their self-assembled structure. Chemistry of Materials, 2002, 14(12): 5053–5056
https://doi.org/10.1021/cm020178f
20 D Alie, L Gedvilas, Z Wang, R Tenent, C Engtrakul, Y Yan, S E Shaheen, A C Dillon, C Ban. Direct synthesis of thermochromic VO2 through hydrothermal reaction. Journal of Solid State Chemistry, 2014, 212: 237–241
https://doi.org/10.1016/j.jssc.2013.10.023
21 M Li, F Kong, Y Zhang, G Li. Hydrothermal synthesis of VO2(B) nanorings with inorganic V2O5 sol. Royal Society of Chemistry, 2011, 13(7): 2204–2207
https://doi.org/10.1039/c0ce00946f
22 Y Dong, S Li, K Zhao, C Han, W Chen, B Wang, L Wang, B Xu, Q Wei, L Zhang, X Xu, L Mai. Hierarchical zigzag Na1.25V3O8 nanowires with topotactically encoded superior performance for sodium-ion battery cathodes. Energy & Environmental Science, 2015, 8(4): 1267–1275
https://doi.org/10.1039/C5EE00036J
23 S Zhang, Y Li, C Wu, F Zheng, Y Xie. Novel flowerlike metastable vanadium dioxide (B) micronanostructures: facile synthesis and application in aqueous lithium ion batteries. Journal of Physical Chemistry C, 2009, 113(33): 15058–15067
https://doi.org/10.1021/jp903312h
24 N Wang, M Duchamp, C Xue, R E Dunin-Borkowski, G Liu, Y Long. Single-crystalline W-doped VO2 nanobeams with highly reversible electrical and plasmonic responses near room temperature. Advanced Materials Interfaces, 2016, 3(15): 1600164
https://doi.org/10.1002/admi.201600164
25 H Liu, Y Wang, K Wang, E Hosono, H Zhou. Design and synthesis of a novel nanothorn VO2(B) hollow microsphere and their application in lithium-ion batteries. Journal of Materials Chemistry, 2009, 19(18): 2835–2840
https://doi.org/10.1039/b821799h
26 L Dai, S Chen, J Liu, Y Gao, J Zhou, Z Chen, C Cao, H Luo, M Kanehira. F-doped VO2 nanoparticles for thermochromic energy-saving foils with modified color and enhanced solar-heat shielding ability. Physical Chemistry Chemical Physics, 2013, 15(28): 11723–11729
https://doi.org/10.1039/c3cp51359a pmid: 23752949
27 J Zhou, Y Gao, X Liu, Z Chen, L Dai, C Cao, H Luo, M Kanahira, C Sun, L Yan. Mg-doped VO2 nanoparticles: hydrothermal synthesis, enhanced visible transmittance and decreased metal-insulator transition temperature. Physical Chemistry Chemical Physics, 2013, 15(20): 7505–7511
https://doi.org/10.1039/c3cp50638j pmid: 23579557
28 R Chen, L Miao, C Liu, J Zhou, H Cheng, T Asaka, Y Iwamoto, S Tanemura. Shape-controlled synthesis and influence of W doping and oxygen nonstoichiometry on the phase transition of VO2. Scientific Reports, 2015, 5(1): 14087
https://doi.org/10.1038/srep14087 pmid: 26373612
29 R Chen, L Miao, H Cheng, E Nishibori, C Liu, T Asaka, Y Iwamoto, M Takata, S Tanemura. One-step hydrothermal synthesis of V1−xWxO2(M/R) nanorods with superior doping efficiency and thermochromic properties. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(7): 3726–3738
https://doi.org/10.1039/C4TA05559D
30 C Leroux, G Nihoul, G V Tendeloo. From VO2(B), to VO2(R): theoretical structures of VO2, polymorphs and in situ, electron microscopy. Physical Review B, 1998, 57(9): 5111–5121
https://doi.org/10.1103/PhysRevB.57.5111
31 C D Wagner, W M Riggs, L E Davis, J F Moulder, G E Muilenberg. Handbook of X-ray Photoelectron Spectroscopy. Minnesota: Perkin-Elmer Corporation Press, 1979, 38
32 E Z Kurmaev, V M Cherkashenko, Y M Yarmoshenko, S Bartkowski, A V Postnikov, M Neumann, L C Duda, J H Guo, J Nordgren, V A Perelyaev, W Reichelt. Electronic structure of studied by X-ray photoelectron and X-ray emission spectroscopies. Journal of Physics Condensed Matter, 1998, 10(18): 4081–4091
https://doi.org/10.1088/0953-8984/10/18/017
33 J Cui, D Da, W Jiang. Structure characterization of vanadium oxide thin films prepared by magnetron sputtering methods. Applied Surface Science, 1998, 133(3): 225–229
https://doi.org/10.1016/S0169-4332(98)00201-3
34 D Yin, N Xu, J Zhang, X Zheng. High quality vanadium dioxide films prepared by an inorganic sol-gel method. Materials Research Bulletin, 1996, 31(3): 335–340
https://doi.org/10.1016/0025-5408(95)00191-3
35 W Burkhardt, T Christmann, B K Meyer, W Niessner, D Schalch, A Scharmann. W- and F-doped VO2 films studied by photoelectron spectrometry. Thin Solid Films, 1999, 345(2): 229–235
https://doi.org/10.1016/S0040-6090(98)01406-0
36 S Lu, L Hou, F Gan. Surface analysis and phase transition of gel-derived VO2 thin films. Thin Solid Films, 1999, 353(1–2): 40–44
https://doi.org/10.1016/S0040-6090(99)00428-9
37 F Li, X Wang, C Shao, R Tan, Y Liu. W doped vanadium oxide nanotubes: synthesis and characterization. Materials Letters, 2007, 61(6): 1328–1332
https://doi.org/10.1016/j.matlet.2006.07.065
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed