|
|
Intense terahertz radiation: generation and application |
Yan ZHANG( ), Kaixuan LI, Huan ZHAO |
Department of Physics, Beijing Key Laboratory for Metamaterials and Devices, Beijing Advanced Innovation Center for Imaging Theory and Technology, Capital Normal University, Beijing 100048, China |
|
|
Abstract Strong terahertz (THz) radiation provides a powerful tool to manipulate and control complex condensed matter systems. This review provides an overview of progress in the generation, detection, and applications of intense THz radiation. The tabletop intense THz sources based on Ti:sapphire laser are reviewed, including photoconductive antennas (PCAs), optical rectification sources, plasma-based THz sources, and some novel techniques for THz generations, such as topological insulators, spintronic materials, and metasurfaces. The coherent THz detection methods are summarized, and their limitations for intense THz detection are analyzed. Applications of intense THz radiation are introduced, including applications in spectroscopy detection, nonlinear effects, and switching of coherent magnons. The review is concluded with a short perspective on the generation and applications of intense THz radiation.
|
Keywords
terahertz (THz) radiation
THz generation
THz detection
light–matter interaction
|
Corresponding Author(s):
Yan ZHANG
|
Just Accepted Date: 30 October 2020
Online First Date: 10 December 2020
Issue Date: 19 April 2021
|
|
1 |
M Tonouchi. Cutting-edge terahertz technology. Nature Photonics, 2007, 1(2): 97–105
https://doi.org/10.1038/nphoton.2007.3
|
2 |
M C Beard, G M Turner, C A Schmuttenmaer. Terahertz spectroscopy. Journal of Physical Chemistry B, 2002, 106(29): 7146–7159
https://doi.org/10.1021/jp020579i
|
3 |
R Ulbricht, E Hendry, J Shan, T F Heinz, M Bonn. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Reviews of Modern Physics, 2011, 83(2): 543–586
https://doi.org/10.1103/RevModPhys.83.543
|
4 |
P U Jepsen, D G Cooke, M Koch. Terahertz spectroscopy and imaging-modern techniques and applications. Laser & Photonics Reviews, 2011, 5(1): 124–166
https://doi.org/10.1002/lpor.201000011
|
5 |
T Kampfrath, K Tanaka, K A Nelson. Resonant and nonresonant control over matter and light by intense terahertz transients. Nature Photonics, 2013, 7(9): 680–690
https://doi.org/10.1038/nphoton.2013.184
|
6 |
A Sell, A Leitenstorfer, R Huber. Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 MV/cm. Optics Letters, 2008, 33(23): 2767–2769
https://doi.org/10.1364/OL.33.002767
pmid: 19037420
|
7 |
X C Zhang, A Shkurinov, Y Zhang. Extreme terahertz science. Nature Photonics, 2017, 11(1): 16–18
https://doi.org/10.1038/nphoton.2016.249
|
8 |
H Hirori, K Tanaka. Dynamical nonlinear interaction of solids with strong terahertz pulses. Journal of the Physical Society of Japan, 2016, 85(8): 082001
https://doi.org/10.7566/JPSJ.85.082001
|
9 |
K Yamaguchi, M Nakajima, T Suemoto. Coherent control of spin precession motion with impulsive magnetic fields of half-cycle terahertz radiation. Physical Review Letters, 2010, 105(23): 237201
https://doi.org/10.1103/PhysRevLett.105.237201
pmid: 21231498
|
10 |
T Kampfrath, A Sell, G Klatt, A Pashkin, S Mährlein, T Dekorsy, M Wolf, M Fiebig, A Leitenstorfer, R Huber. Coherent terahertz control of antiferromagnetic spin waves. Nature Photonics, 2011, 5(1): 31–34
https://doi.org/10.1038/nphoton.2010.259
|
11 |
D Daranciang, J Goodfellow, M Fuchs, H Wen, S Ghimire, D A Reis, H Loos, A S Fisher, A M Lindenberg. Single-cycle terahertz pulses with >0.2 V/Å field amplitudes via coherent transition radiation. Applied Physics Letters, 2011, 99(14): 141117
https://doi.org/10.1063/1.3646399
|
12 |
H T Li, Y L Lu, Z G He, Q K Jia, L Wang. Generation of intense narrow-band tunable terahertz radiation from highly bunched electron pulse train. Journal of Infrared, Millimeter and Terahertz Waves, 2016, 37(7): 649–657
https://doi.org/10.1007/s10762-016-0258-9
|
13 |
L Hou, W Shi. An LT-GaAs terahertz photoconductive antenna with high emission power, low noise, and good stability. IEEE Transactions on Electron Devices, 2013, 60(5): 1619–1624
https://doi.org/10.1109/TED.2013.2253467
|
14 |
M C Beard, G M Turner, C A Schmuttenmaer. Subpicosecond carrier dynamics in low-temperature grown GaAs as measured by time resolved terahertz spectroscopy. Journal of Applied Physics, 2001, 90(12): 5915–5923
https://doi.org/10.1063/1.1416140
|
15 |
A M Buryakov, M S Ivanov, S A Nomoev, D I Khusyainov, E D Mishina, V A Khomchenko, I S Vasilevskii, A N Vinichenko, K I Kozlovskii, A A Chistyakov, J A Paixão. An advanced approach to control the electro-optical properties of LT-GaAs based terahertz photoconductive antenna. Materials Research Bulletin, 2020, 122: 110688
https://doi.org/10.1016/j.materresbull.2019.110688
|
16 |
F E Doany, D Grischkowsky, C C Chi. Carrier lifetime versus ion-implantation dose in silicon on sapphire. Applied Physics Letters, 1987, 50(8): 460–462
https://doi.org/10.1063/1.98173
|
17 |
S Y Sarkisov, F D Safiullin, M S Skakunov, O P Tolbanov, A V Tyazhev, M M Nazarov, A P Shkurinov. Dipole antennas based on SI-GaAs:Cr for generation and detection of terahertz radiation. Russian Physics Journal, 2013, 55(8): 890–898
https://doi.org/10.1007/s11182-013-9897-7
|
18 |
J C Rode, H W Chiang, P Choudhary, V Jain, B J Thibeault, W J Mitchell, M J W Rodwell, M Urteaga, D Loubychev, A Snyder, Y Wu, J M Fastenau, A W K Liu. Indium phosphide heterobipolar transistor technology beyond 1-THz bandwidth. IEEE Journal of Transactions on Electron Devices, 2015, 62(9): 2779–2785
https://doi.org/10.1109/TED.2015.2455231
|
19 |
F Simoens, J Meilhan, B Delplanque, S Gidon, G Lasfargues, J L Dera, D T Nguyen, J L Ouvrier-Buffet, S Pocas, T Maillou, O Cathabard, S Barbieri. Real-time imaging with THz fully-customized uncooled amorphous-silicon microbolometer focal plane arrays. Proceedings of the Society for Photo-Instrumentation Engineers, 2012, 8363: 83630D, 83630D-12
https://doi.org/10.1117/12.919185
|
20 |
D You, R R Jones, P H Bucksbaum, D R Dykaar. Generation of high-power sub-single-cycle 500-fs electromagnetic pulses. Optics Letters, 1993, 18(4): 290–292
https://doi.org/10.1364/OL.18.000290
pmid: 19802113
|
21 |
H A Hafez, X Chai, A Ibrahim, S Mondal, D Férachou, X Ropagnol, T Ozaki. Intense terahertz radiation and their applications. Journal of Optics, 2016, 18(9): 093004
https://doi.org/10.1088/2040-8978/18/9/093004
|
22 |
S Kasai, M Watanabe, T Ouchi. Improved terahertz wave intensity in photoconductive antennas formed of annealed low-temperature grown GaAs. Japanese Journal of Applied Physics, 2007, 46(7A): 4163–4165
https://doi.org/10.1143/JJAP.46.4163
|
23 |
H Yoneda, K Tokuyama, H Nagata. Generation of high-peak-power THz radiation by using diamond photoconductive antenna array. In: Proceedings of the 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS). San Diego: IEEE, 2001, 644–645
|
24 |
S Ono, H Murakami, A Quema, G Diwa, N Sarukura, R Nagasaka, Y Ichikawa, H Ogino, E Ohshima, A Yoshikawa, T Fukuda. Generation of terahertz radiation using zinc oxide as photoconductive material excited by ultraviolet pulses. Applied Physics Letters, 2005, 87(26): 261112
https://doi.org/10.1063/1.2158514
|
25 |
K Ahi. Review of GaN-based devices for terahertz operation. Optical Engineering (Redondo Beach, Calif.), 2017, 56(09): 090901
https://doi.org/10.1117/1.OE.56.9.090901
|
26 |
P S Cho, P T Ho, J Goldhar, C H Lee. Photoconductivity in ZnSe under high electric fields. IEEE Journal of Quantum Electronics, 1994, 30(6): 1489–1497
https://doi.org/10.1109/3.299474
|
27 |
I Kikuma, M Matsuo, T Komuro. In situ annealing of melt-Grown ZnSe crystals under Zn partial pressure. Japanese Journal of Applied Physics, 1992, 31(Part 2, No. 5A): L531–L534
https://doi.org/10.1143/JJAP.31.L531
|
28 |
X Ropagnol, M Bouvier, M Reid, T Ozaki. Improvement in thermal barriers to intense terahertz generation from photoconductive antennas. Journal of Applied Physics, 2014, 116(4): 043107
https://doi.org/10.1063/1.4891451
|
29 |
O Imafuji, B P Singh, Y Hirose, Y Fukushima, S Takigawa. High power subterahertz electromagnetic wave radiation from GaN photoconductive switch. Applied Physics Letters, 2007, 91(7): 071112
https://doi.org/10.1063/1.2771528
|
30 |
M Xu, M Mittendorff, R J B Dietz, H Künzel, B Sartorius, T Göbel, H Schneider, M Helm, S Winnerl. Terahertz generation and detection with InGaAs-based large-area photoconductive devices excited at 1.55 µm. Applied Physics Letters, 2013, 103(25): 251114
https://doi.org/10.1063/1.4855616
|
31 |
B Salem, D Morris, V Aimez, J Beerens, J Beauvais, D Houde. Pulsed photoconductive antenna terahertz sources made on ion-implanted GaAs substrates. Journal of Physics Condensed Matter, 2005, 17(46): 7327–7333
https://doi.org/10.1088/0953-8984/17/46/016
|
32 |
A Dreyhaupt, S Winnerl, T Dekorsy, M Helm. High-intensity terahertz radiation from a microstructured large-area photoconductor. Applied Physics Letters, 2005, 86(12): 121114
https://doi.org/10.1063/1.1891304
|
33 |
X Ropagnol, R Morandotti, T Ozaki, M Reid. Toward high-power terahertz emitters using large aperture ZnSe photoconductive antennas. IEEE Journal of Photonics, 2011, 3(2): 174–186
https://doi.org/10.1109/JPHOT.2011.2116112
|
34 |
T Hattori, K Egawa, S I Ookuma, T Itatani. Intense terahertz pulses from large-aperture antenna with interdigitated electrodes. Japanese Journal of Applied Physics, 2006, 45(15): L422–L424
https://doi.org/10.1143/JJAP.45.L422
|
35 |
M Beck, H Schäfer, G Klatt, J Demsar, S Winnerl, M Helm, T Dekorsy. Impulsive terahertz radiation with high electric fields from an amplifier-driven large-area photoconductive antenna. Optics Express, 2010, 18(9): 9251–9257
https://doi.org/10.1364/OE.18.009251
pmid: 20588772
|
36 |
N T Yardimci, S H Yang, C W Berry, M Jarrahi. High-power terahertz generation using large-area plasmonic photoconductive emitters. IEEE Transactions on Terahertz Science and Technology, 2015, 5(2): 223–229
https://doi.org/10.1109/TTHZ.2015.2395417
|
37 |
J Madéo, N Jukam, D Oustinov, M Rosticher, R Rungsawang, J Tignon, S S Dhillon. Frequency tunable terahertz interdigitated photoconductive antennas. Electronics Letters, 2010, 46(9): 611–613
https://doi.org/10.1049/el.2010.0440
|
38 |
X Ropagnol, R Morandotti, T Ozaki, M Reid. THz pulse shaping and improved optical-to-THz conversion efficiency using a binary phase mask. Optics Letters, 2011, 36(14): 2662–2664
https://doi.org/10.1364/OL.36.002662
pmid: 21765501
|
39 |
X Ropagnol, M Khorasaninejad, M Raeiszadeh, S Safavi-Naeini, M Bouvier, C Y Côté, A Laramée, M Reid, M A Gauthier, T Ozaki. Intense THz Pulses with large ponderomotive potential generated from large aperture photoconductive antennas. Optics Express, 2016, 24(11): 11299–11311
https://doi.org/10.1364/OE.24.011299
pmid: 27410061
|
40 |
X Ropagnol, X Chai, S M Raeis-Zadeh, S Safavi-Naeini, M Kirouac-Turmel, M Bouvier, C Y Côté, M Reid, M A Gauthier, T Ozaki. Influence of gap size on intense THz generation from ZnSe interdigitated large aperture photoconductive antennas. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(4): 1–8
https://doi.org/10.1109/JSTQE.2017.2662658
|
41 |
W Shi, L Hou, X M Wang. High effective terahertz radiation from semi-insulating-GaAs photoconductive antennas with ohmic contact electrodes. Journal of Applied Physics, 2011, 110(2): 023111
https://doi.org/10.1063/1.3611397
|
42 |
J Hebling, K L Yeh, M C Hoffmann, B Bartal, K A Nelson. Generation of high-power terahertz pules by tilted-pulse-front excitation and their application possibilities. Journal of the Optical Society of America B, Optical Physics, 2008, 25(7): B6–B19
https://doi.org/10.1364/JOSAB.25.0000B6
|
43 |
F Blanchard, G Sharma, L Razzari, X Ropagnol, H C Bandulet, F Vidal, R Morandotti, J C Kieffer, T Ozaki, H Tiedje, H Haugen, M Reid, F Hegmann. Generation of intense terahertz radiation via optical methods. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(1): 5–16
https://doi.org/10.1109/JSTQE.2010.2047715
|
44 |
F Blanchard, L Razzari, H C Bandulet, G Sharma, R Morandotti, J C Kieffer, T Ozaki, M Reid, H F Tiedje, H K Haugen, F A Hegmann. Generation of 1.5 µJ single-cycle terahertz pulses by optical rectification from a large aperture ZnTe crystal. Optics Express, 2007, 15(20): 13212–13220
https://doi.org/10.1364/OE.15.013212
pmid: 19550589
|
45 |
T Löffler, T Hahn, M Thomson, F Jacob, H Roskos. Large-area electro-optic ZnTe terahertz emitters. Optics Express, 2005, 13(14): 5353–5362
https://doi.org/10.1364/OPEX.13.005353
pmid: 19498529
|
46 |
J A Fülöp, L Pálfalvi, S Klingebiel, G Almási, F Krausz, S Karsch, J Hebling. Generation of sub-mJ terahertz pulses by optical rectification. Optics Letters, 2012, 37(4): 557–559
https://doi.org/10.1364/OL.37.000557
pmid: 22344105
|
47 |
F Blanchard, X Ropagnol, H Hafez, H Razavipour, M Bolduc, R Morandotti, T Ozaki, D G Cooke. Effect of extreme pump pulse reshaping on intense terahertz emission in lithium niobate at multimilliJoule pump energies. Optics Letters, 2014, 39(15): 4333–4336
https://doi.org/10.1364/OL.39.004333
pmid: 25078170
|
48 |
L Pálfalvi, J Hebling, G Almasi, A Peter, K Polgar, K Lengyel, R Szipocs. Nonlinear refraction and absorption of Mg doped stoichiometric and congruent LiNbO3. Journal of Applied Physics, 2004, 95(3): 902–908
https://doi.org/10.1063/1.1635993
|
49 |
S W Huang, E Granados, W R Huang, K H Hong, L E Zapata, F X Kärtner. High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate. Optics Letters, 2013, 38(5): 796–798
https://doi.org/10.1364/OL.38.000796
pmid: 23455302
|
50 |
X J Wu, J L Ma, B L Zhang, S S Chai, Z J Fang, C Y Xia, D Y Kong, J G Wang, H Liu, C Q Zhu, X Wang, C J Ruan, Y T Li. Highly efficient generation of 0.2 mJ terahertz pulses in lithium niobate at room temperature with sub-50 fs chirped Ti:sapphire laser pulses. Optics Express, 2018, 26(6): 7107–7116
https://doi.org/10.1364/OE.26.007107
pmid: 29609397
|
51 |
T I Oh, Y J Yoo, Y S You, K Y Kim. Generation of strong terahertz fields exceeding 8 MV/cm at 1 kHz and real-time beam profiling. Applied Physics Letters, 2014, 105(4): 041103
https://doi.org/10.1063/1.4891678
|
52 |
M Jazbinsek, U Puc, A Abina, A Zidansek. Organic crystal for THz photonics. Applied Sciences (Basel, Switzerland), 2019, 9(5): 882
https://doi.org/10.3390/app9050882
|
53 |
C P Hauri, C Ruchert, C Vicario, F Ardana. Strong-field single-cycle THz pulses generated in an organic crystal. Applied Physics Letters, 2011, 99(16): 161116
https://doi.org/10.1063/1.3655331
|
54 |
M Shalaby, C P Hauri. Demonstration of a low-frequency three-dimensional terahertz bullet with extreme brightness. Nature Communications, 2015, 6(1): 5976
https://doi.org/10.1038/ncomms6976
pmid: 25591665
|
55 |
B Liu, H Bromberger, A Cartella, T Gebert, M Först, A Cavalleri. Generation of narrowband, high-intensity, carrier-envelope phase-stable pulses tunable between 4 and 18 THz. Optics Letters, 2017, 42(1): 129–131
https://doi.org/10.1364/OL.42.000129
pmid: 28059195
|
56 |
H Zhao, Y Tan, T Wu, G Steinfeld, Y Zhang, C L Zhang, L L Zhang, M Shalaby. Efficient broadband terahertz generation from organic crystal BNA using near infrared pump. Applied Physics Letters, 2019, 114(24): 241101
https://doi.org/10.1063/1.5098855
|
57 |
R A Kaindl, F Eickemeyer, M Woerner, T Elsaesser. Broadband phase-matched difference frequency mixing of femtosecond pulses in GaSe: experiment and theory. Applied Physics Letters, 1999, 75(8): 1060–1062
https://doi.org/10.1063/1.124596
|
58 |
F Junginger, A Sell, O Schubert, B Mayer, D Brida, M Marangoni, G Cerullo, A Leitenstorfer, R Huber. Single-cycle multiterahertz transients with peak fields above 10 MV/cm. Optics Letters, 2010, 35(15): 2645–2647
https://doi.org/10.1364/OL.35.002645
pmid: 20680086
|
59 |
H Hamster, A Sullivan, S Gordon, W White, R W Falcone. Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Physical Review Letters, 1993, 71(17): 2725–2728
https://doi.org/10.1103/PhysRevLett.71.2725
pmid: 10054760
|
60 |
W F Sun, Y S Zhou, X K Wang, Y Zhang. External electric field control of THz pulse generation in ambient air. Optics Express, 2008, 16(21): 16573–16580
https://doi.org/10.1364/OE.16.016573
pmid: 18852766
|
61 |
F Bakhtiari, M Esmaeilzadeh, B Ghafary. Terahertz radiation with high power and high efficiency in a magnetized plasma. Physics of Plasmas, 2017, 24(7): 073112
https://doi.org/10.1063/1.4991395
|
62 |
X Xie, J Dai, X C Zhang. Coherent control of THz wave generation in ambient air. Physical Review Letters, 2006, 96(7): 075005
https://doi.org/10.1103/PhysRevLett.96.075005
pmid: 16606102
|
63 |
A D Koulouklidis, C Gollner, V Shumakova, V Y Fedorov, A Pugžlys, A Baltuška, S Tzortzakis. Observation of extremely efficient terahertz generation from mid-infrared two-color laser filaments. Nature Communications, 2020, 11(1): 292
https://doi.org/10.1038/s41467-019-14206-x
pmid: 31941895
|
64 |
K Y Kim, A J Taylor, J H Glownia, G Rodriguez. Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions. Nature Photonics, 2008, 2(10): 605–609
https://doi.org/10.1038/nphoton.2008.153
|
65 |
D J Cook, R M Hochstrasser. Intense terahertz pulses by four-wave rectification in air. Optics Letters, 2000, 25(16): 1210–1212
https://doi.org/10.1364/OL.25.001210
pmid: 18066171
|
66 |
J M Dai, X C Zhang. Terahertz wave generation from gas plasma using a phase compensator with attosecond phase-control accuracy. Applied Physics Letters, 2009, 94(2): 021117
https://doi.org/10.1063/1.3068501
|
67 |
L L Zhang, W M Wang, T Wu, R Zhang, S J Zhang, C L Zhang, Y Zhang, Z M Sheng, X C Zhang. Observation of terahertz radiation via the two-color laser scheme with uncommon frequency ratios. Physical Review Letters, 2017, 119(23): 235001
https://doi.org/10.1103/PhysRevLett.119.235001
pmid: 29286697
|
68 |
X Y Peng, C Li, M Chen, T Toncian, R Jung, O Willi, Y T Li, W M Wang, S J Wang, F Liu, A Pukhov, Z M Sheng, J Zhang. Strong terahertz radiation from air plasmas generated by an aperture-limited Gaussian pump laser beam. Applied Physics Letters, 2009, 94(10): 101502
https://doi.org/10.1063/1.3098357
|
69 |
K Y Kim, J H Glownia, A J Taylor, G Rodriguez. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields. Optics Express, 2007, 15(8): 4577–4584
https://doi.org/10.1364/OE.15.004577
pmid: 19532704
|
70 |
G Q Liao, Y T Li, Y H Zhang, H Liu, X L Ge, S Yang, W Q Wei, X H Yuan, Y Q Deng, B J Zhu, Z Zhang, W M Wang, Z M Sheng, L M Chen, X Lu, J L Ma, X Wang, J Zhang. Demonstration of coherent terahertz transition radiation from relativistic laser-solid interactions. Physical Review Letters, 2016, 116(20): 205003
https://doi.org/10.1103/PhysRevLett.116.205003
pmid: 27258873
|
71 |
Y Tian, J S Liu, Y F Bai, S Y Zhou, H Y Sun, W W Liu, J Y Zhao, R X Li, Z Z Xu. Femtosecond-laser-driven wire-guided helical undulator for intense terahertz radiation. Nature Photonics, 2017, 11(4): 242–246
https://doi.org/10.1038/nphoton.2017.16
|
72 |
Q Jin, Y E, K Williams, J Dai, X C Zhang. Observation of broadband terahertz wave generation from liquid water. Applied Physics Letters, 2017, 111(7): 071103
https://doi.org/10.1063/1.4990824
|
73 |
I Dey, K Jana, V Y Fedorov, A D Koulouklidis, A Mondal, M Shaikh, D Sarkar, A D Lad, S Tzortzakis, A Couairon, G R Kumar. Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids. Nature Communications, 2017, 8(1): 1184
https://doi.org/10.1038/s41467-017-01382-x
pmid: 29084961
|
74 |
L L Zhang, W M Wang, T Wu, S J Feng, K Kang, C L Zhang, Y Zhang, Y T Li, Z M Sheng, X C Zhang. Strong terahertz radiation from a liquid-water line. Physical Review Applied, 2019, 12(1): 014005
https://doi.org/10.1103/PhysRevApplied.12.014005
|
75 |
L G Zhu, B Kubera, K Fai Mak, J Shan. Effect of surface states on terahertz emission from the Bi2Se3 surface. Scientific Reports, 2015, 5(1): 10308
https://doi.org/10.1038/srep10308
pmid: 25988722
|
76 |
C W Luo, H J Chen, C M Tu, C C Lee, S A Ku, W Y Tzeng, T T Yeh, M C Chiang, H J Wang, W C Chu, J Y Lin, K H Wu, J Y Juang, T Kobayashi, C M Cheng, C H Chen, K D Tsuei, H Berger, R Sankar, F C Chou, H D Yang. THz generation and detection on Dirac Fermions in topological insulators. Advanced Optical Materials, 2013, 1(11): 804–808
https://doi.org/10.1002/adom.201300221
|
77 |
T Seifert, S Jaiswal, U Martens, J Hannegan, L Braun, P Maldonado, F Freimuth, A Kronenberg, J Henrizi, I Radu, E Beaurepaire, Y Mokrousov, P M Oppeneer, M Jourdan, G Jakob, D Turchinovich, L M Hayden, M Wolf, M Münzenberg, M Kläui, T Kampfrath. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation. Nature Photonics, 2016, 10(7): 483–488
https://doi.org/10.1038/nphoton.2016.91
|
78 |
D Yang, J Liang, C Zhou, L Sun, R Zheng, S N Luo, Y Z Wu, J B Qi. Powerful and tunable THz emitters based on the Fe/Pt magnetic heterostructure. Advanced Optical Materials, 2016, 4(12): 1944–1949
https://doi.org/10.1002/adom.201600270
|
79 |
T Seifert, S Jaiswal, M Sajadi, G Jakob, S Winnerl, M Wolf, M Kläui, T Kampfrath. Ultrabroadband single-cycle terahertz pulses with peak fields of 300 kV·cm−1 from a metallic spintronic emitter. Applied Physics Letters, 2017, 110: 252402
https://doi.org/10.1063/1.4986755
|
80 |
L Luo, I Chatzakis, J Wang, F B P Niesler, M Wegener, T Koschny, C M Soukoulis. Broadband terahertz generation from metamaterials. Nature Communications, 2014, 5(1): 3055
https://doi.org/10.1038/ncomms4055
pmid: 24402324
|
81 |
S Keren-Zur, M Tal, S Fleischer, D M Mittleman, T Ellenbogen. Generation of spatiotemporally tailored terahertz wavepackets by nonlinear metasurfaces. Nature Communications, 2019, 10(1): 1778
https://doi.org/10.1038/s41467-019-09811-9
pmid: 30992447
|
82 |
X Ropagnol, F Blanchard, T Ozaki, M Reid. Intense terahertz generation at low frequencies using an interdigitated ZnSe large aperture photoconductive antenna. Applied Physics Letters, 2013, 103(16): 161108
https://doi.org/10.1063/1.4825165
|
83 |
H Hirori, A A Doi, F Blanchard, K Tanaka. Single cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3. Applied Physics Letters, 2011, 98(9): 091106
https://doi.org/10.1063/1.3560062
|
84 |
P R Smith, D H Auston, M C Nuss. Subpicosecond photoconducting dipole antennas. IEEE Journal of Quantum Electronics, 1988, 24(2): 255–260
https://doi.org/10.1109/3.121
|
85 |
Q Wu, X C Zhang. Free-space electro-optic sampling of terahertz beams. Applied Physics Letters, 1995, 67(24): 3523–3525
https://doi.org/10.1063/1.114909
|
86 |
C Fattinger, D R Grischkowsky. Terahertz beams. Applied Physics Letters, 1989, 54(6): 490–492
https://doi.org/10.1063/1.100958
|
87 |
M van Exter, D R Grischkowsky. Characterization of an optoelectronic terahertz beam system. IEEE Transactions on Microwave Theory and Techniques, 1990, 38(11): 1684–1691
https://doi.org/10.1109/22.60016
|
88 |
Y S Lee. Principles of Terahertz Science and Technology. Berlin: Springer, 2008
|
89 |
A Singh, S Pal, H Surdi, S S Prabhu, S Mathimalar, V Nanal, R G Pillay, G H Döhler. Carbon irradiated semi insulating GaAs for photoconductive terahertz pulse detection. Optics Express, 2015, 23(5): 6656–6661
https://doi.org/10.1364/OE.23.006656
pmid: 25836882
|
90 |
T A Liu, M Tani, M Nakajima, M Hangyo, C L Pan. Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs. Applied Physics Letters, 2003, 83(7): 1322–1324
https://doi.org/10.1063/1.1604191
|
91 |
T Hattori, K Tukamoto, H Nakatsuka. Time-resolved study of intense terahertz pulses generated by a large aperture photoconductive antenna. Japanese Journal of Applied Physics, 2001, 40(Part 1, No. 8): 4907–4912
https://doi.org/10.1143/JJAP.40.4907
|
92 |
P U Jepsen, R H Jacobsen, S R Keiding. Generation and detection of terahertz pulses from biased semiconductor antennas. Journal of the Optical Society of America B, Optical Physics, 1996, 13(11): 2424–2436
https://doi.org/10.1364/JOSAB.13.002424
|
93 |
G Sharma, I Al-Naib, H Hafez, R Morandotti, D G Cooke, T Ozaki. Carrier density dependence of the nonlinear absorption of intense THz radiation in GaAs. Optics Express, 2012, 20(16): 18016–18024
https://doi.org/10.1364/OE.20.018016
pmid: 23038349
|
94 |
G Gallot, J Zhang, R McGowan, T Jeon, D Grischkowsky. Measurements of the THz absorption and dispersion of ZnTe and their relevance to the electro-optic detection of THz radiation. Applied Physics Letters, 1999, 74(23): 3450–3452
https://doi.org/10.1063/1.124124
|
95 |
C Kübler, R Huber, S Tübel, A Leitenstorfer. Ultrabroadband detection of multi-terahertz field transients with GaSe electro-optic sensors: approaching the near infrared. Applied Physics Letters, 2004, 85(16): 3360–3362
https://doi.org/10.1063/1.1808232
|
96 |
K Reimann, R P Smith, A M Weiner, T Elsaesser, M Woerner. Direct field-resolved detection of terahertz transients with amplitudes of megavolts per centimeter. Optics Letters, 2003, 28(6): 471–473
https://doi.org/10.1364/OL.28.000471
pmid: 12659283
|
97 |
M Schall, H Helm, S R Keiding. Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy. International Journal of Infrared and Millimeter Waves, 1999, 20(4): 595–604
https://doi.org/10.1023/A:1022636421426
|
98 |
G Sharma, K Singh, I Al-Naib, R Morandotti, T Ozaki. Terahertz detection using spectral domain interferometry. Optics Letters, 2012, 37(20): 4338–4340
https://doi.org/10.1364/OL.37.004338
pmid: 23073455
|
99 |
J Dai, X Xie, X C Zhang. Detection of broadband terahertz waves with a laser-induced plasma in gases. Physical Review Letters, 2006, 97(10): 103903
https://doi.org/10.1103/PhysRevLett.97.103903
pmid: 17025819
|
100 |
N Karpowicz, J Dai, X Lu, Y Chen, M Yamaguchi, H Zhao, X C Zhang, L Zhang, C Zhang, M Price-Gallagher, C Fletcher, O Mamer, A Lesimple, K Johnson. Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”. Applied Physics Letters, 2008, 92(1): 011131
https://doi.org/10.1063/1.2828709
|
101 |
I C Ho, X Guo, X C Zhang. Design and performance of reflective terahertz air-biased-coherent-detection for time-domain spectroscopy. Optics Express, 2010, 18(3): 2872–2883
https://doi.org/10.1364/OE.18.002872
pmid: 20174116
|
102 |
J Liu, X C Zhang. Terahertz-radiation-enhanced emission of fluorescence from gas plasma. Physical Review Letters, 2009, 103(23): 235002
https://doi.org/10.1103/PhysRevLett.103.235002
pmid: 20366153
|
103 |
J L Liu, X C Zhang. Plasma characterization using terahertz-wave-enhanced fluorescence. Applied Physics Letters, 2010, 96(4): 041505
https://doi.org/10.1063/1.3291676
|
104 |
J L Liu, J M Dai, S L Chin, X C Zhang. Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases. Nature Photonics, 2010, 4(9): 627–631
https://doi.org/10.1038/nphoton.2010.165
|
105 |
B Clough, J Liu, X C Zhang. Laser-induced photoacoustics influenced by single-cycle terahertz radiation. Optics Letters, 2010, 35(21): 3544–3546
https://doi.org/10.1364/OL.35.003544
pmid: 21042344
|
106 |
D Turchinovich, J M Hvam, M C Hoffmann. Self-phase modulation of a single-cycle terahertz pulse by nonlinear free-carrier response in a semiconductor. Physical Review B, 2012, 85(20): 201304
https://doi.org/10.1103/PhysRevB.85.201304
|
107 |
M Paul, Y Chang, Z Thompson, A Stickel, J Wardini, H Choi, E Minot, B Hou, J Nees, T Norris, Y Lee. High-field terahertz response of graphene. New Journal of Physics, 2013, 15(8): 085019
https://doi.org/10.1088/1367-2630/15/8/085019
|
108 |
P Bowlan, E Martinez-Moreno, K Reimann, T Elsaesser, M Woerner. Ultrafast terahertz response of multilayer graphene in the nonperturbative regime. Physical Review B, 2014, 89(4): 041408
https://doi.org/10.1103/PhysRevB.89.041408
|
109 |
M Melnik, I Vorontsova, S Putilin, A Tcypkin, S Kozlov. Methodical inaccuracy of the Z-scan method for few-cycle terahertz pulses. Scientific Reports, 2019, 9(1): 9146
https://doi.org/10.1038/s41598-019-45735-6
pmid: 31235853
|
110 |
O Schubert, M Hohenleutner, F Langer, B Urbanek, C Lange, U Huttner, D Golde, T Meier, M Kira, S Koch, R Huber. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nature Photonics, 2014, 8(2): 119–123
https://doi.org/10.1038/nphoton.2013.349
|
111 |
H A Hafez, S Kovalev, J C Deinert, Z Mics, B Green, N Awari, M Chen, S Germanskiy, U Lehnert, J Teichert, Z Wang, K J Tielrooij, Z Liu, Z Chen, A Narita, K Müllen, M Bonn, M Gensch, D Turchinovich. Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions. Nature, 2018, 561(7724): 507–511
https://doi.org/10.1038/s41586-018-0508-1
pmid: 30202091
|
112 |
Y M Bahk, B J Kang, Y S Kim, J Y Kim, W T Kim, T Y Kim, T Kang, J Rhie, S Han, C H Park, F Rotermund, D S Kim. Electromagnetic saturation of angstrom-sized quantum barriers at terahertz frequencies. Physical Review Letters, 2015, 115(12): 125501
https://doi.org/10.1103/PhysRevLett.115.125501
pmid: 26431000
|
113 |
M M Jadidi, J C König-Otto, S Winnerl, A B Sushkov, H D Drew, T E Murphy, M Mittendorff. Nonlinear terahertz absorption of graphene plasmons. Nano Letters, 2016, 16(4): 2734–2738
https://doi.org/10.1021/acs.nanolett.6b00405
pmid: 26978242
|
114 |
F Giorgianni, E Chiadroni, A Rovere, M Cestelli-Guidi, A Perucchi, M Bellaveglia, M Castellano, D Di Giovenale, G Di Pirro, M Ferrario, R Pompili, C Vaccarezza, F Villa, A Cianchi, A Mostacci, M Petrarca, M Brahlek, N Koirala, S Oh, S Lupi. Strong nonlinear terahertz response induced by Dirac surface states in Bi2Se3 topological insulator. Nature Communications, 2016, 7(1): 11421
https://doi.org/10.1038/ncomms11421
pmid: 27113395
|
115 |
C Vicario, M Shalaby, C P Hauri. Subcycle extreme nonlinearities in GaP induced by an ultrastrong terahertz field. Physical Review Letters, 2017, 118(8): 083901
https://doi.org/10.1103/PhysRevLett.118.083901
pmid: 28282208
|
116 |
O V Chefonov, A V Ovchinnikov, M B Agranat, V E Fortov, E S Efimenko, A N Stepanov, A B Savel’ev. Nonlinear transfer of an intense few-cycle terahertz pulse through opaque n-doped Si. Physical Review B, 2018, 98(16): 165206
https://doi.org/10.1103/PhysRevB.98.165206
|
117 |
A Pashkin, A Sell, T Kampfrath, R Huber. Electric and magnetic terahertz nonlinearities resolved on the sub-cycle scale. New Journal of Physics, 2013, 15(6): 065003
https://doi.org/10.1088/1367-2630/15/6/065003
|
118 |
K Yamaguchi, M Nakajima, T Suemoto. Coherent control of spin precession motion with impulsive magnetic fields of half-cycle terahertz radiation. Physical Review Letters, 2010, 105(23): 237201
https://doi.org/10.1103/PhysRevLett.105.237201
pmid: 21231498
|
119 |
Z Wang, M Pietz, J Walowski, A Förster, M I Lepsa, M Münzenberg. Spin dynamics triggered by subterahertz magnetic field pulses. Journal of Applied Physics, 2008, 103(12): 123905
https://doi.org/10.1063/1.2940734
|
120 |
E Beaurepaire, J Merle, A Daunois, J Bigot. Ultrafast spin dynamics in ferromagnetic nickel. Physical Review Letters, 1996, 76(22): 4250–4253
https://doi.org/10.1103/PhysRevLett.76.4250
pmid: 10061239
|
121 |
X Li, T Qiu, J Zhang, E Baldini, J Lu, A M Rappe, K A Nelson. Terahertz field-induced ferroelectricity in quantum paraelectric SrTiO3. Science, 2019, 364(6445): 1079–1082
https://doi.org/10.1126/science.aaw4913
pmid: 31197011
|
122 |
L Razzari, F Su, G Sharma, F Blanchard, A Ayesheshim, H Bandulet, H Morandotti, J Kieffer, T Ozaki, M Reid, F Hegmann. Nonlinear ultrafast modulation of the optical absorption of intense few-cycle terahertz pulses in n-doped semiconductors. Physical Review B, 2009, 79(19): 193204
https://doi.org/10.1103/PhysRevB.79.193204
|
123 |
G Kaur, P Han, X Zhang. Terahertz induced nonlinear effects in doped Silicon observed by open-aperture Z-scan. In: Proceedings of the 35th International Conference on Infrared, Millimeter, and Terahertz Waves. Rome: IEEE, 2010, 5613068
|
124 |
J H Strait, H Wang, S Shivaraman, V Shields, M Spencer, F Rana. Very slow cooling dynamics of photoexcited carriers in graphene observed by optical-pump terahertz-probe spectroscopy. Nano Letters, 2011, 11(11): 4902–4906
https://doi.org/10.1021/nl202800h
pmid: 21973122
|
125 |
S Boubanga-Tombet, S Chan, T Watanabe, A Satou, V Ryzhii, T Otsuji. Ultrafast carrier dynamics and terahertz emission in optically pumped graphene at room temperature. Physical Review B, 2012, 85(3): 035443
https://doi.org/10.1103/PhysRevB.85.035443
|
126 |
C J Docherty, C T Lin, H J Joyce, R J Nicholas, L M Herz, L J Li, M B Johnston. Extreme sensitivity of graphene photoconductivity to environmental gases. Nature Communications, 2012, 3(1): 1228
https://doi.org/10.1038/ncomms2235
pmid: 23187628
|
127 |
G Jnawali, Y Rao, H Yan, T F Heinz. Observation of a transient decrease in terahertz conductivity of single-layer graphene induced by ultrafast optical excitation. Nano Letters, 2013, 13(2): 524–530
https://doi.org/10.1021/nl303988q
pmid: 23330567
|
128 |
K J Tielrooij, J C W Song, S A Jensen, A Centeno, A Pesquera, A Zurutuza Elorza, M Bonn, L S Levitov, F H L Koppens. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nature Physics, 2013, 9(4): 248–252
https://doi.org/10.1038/nphys2564
|
129 |
A Wright, X Xu, J Cao, C Zhang. Strong nonlinear optical response of graphene in the terahertz regime. Applied Physics Letters, 2009, 95(7): 072101
https://doi.org/10.1063/1.3205115
|
130 |
K Ishikawa. Nonlinear optical response of graphene in time domain. Physical Review B, 2012, 85: 035443
|
131 |
S Shareef, Y Ang, C Zhang. Room-temperature strong terahertz photon mixing in graphene. Journal of the Optical Society of America B, Optical Physics, 2012, 29(3): 274–279
https://doi.org/10.1364/JOSAB.29.000274
|
132 |
H A Hafez, I Al-Naib, K Oguri, Y Sekine, M M Dignam, A Ibrahim, D G Cooke, S Tanaka, F Komori, H Hibino, T Ozaki. Nonlinear transmission of an intense terahertz field through monolayer graphene. AIP Advances, 2014, 4(11): 117118
https://doi.org/10.1063/1.4902096
|
133 |
F H Su, F Blanchard, G Sharma, L Razzari, A Ayesheshim, T L Cocker, L V Titova, T Ozaki, J C Kieffer, R Morandotti, M Reid, F A Hegmann. Terahertz pulse induced intervalley scattering in photoexcited GaAs. Optics Express, 2009, 17(12): 9620–9629
https://doi.org/10.1364/OE.17.009620
pmid: 19506611
|
134 |
H Hafez, I Al-Naib, M Dignam, Y Sekine, K Oguri, F Blanchard, D Cooke, S Tanaka, F Komori, H Hibino, T Ozaki. Nonlinear terahertz field-induced carrier dynamics in photoexcited epitaxial monolayer graphene. Physical Review B, 2015, 91(3): 035422
https://doi.org/10.1103/PhysRevB.91.035422
|
135 |
M Hoffmann, J Hebling, H Hwang, K Yeh, K Nelson. THz-pump/THz-probe spectroscopy of semiconductors at high field strengths. Journal of the Optical Society of America B, Optical Physics, 2009, 26(9): A29–A34
https://doi.org/10.1364/JOSAB.26.000A29
|
136 |
J Hebling, M Hoffmann, H Hwang, K Yeh, K Nelson. Observation of nonequilibrium carrier distribution in Ge, Si, and GaAs by terahertz pump–terahertz probe measurements. Physical Review B, 2010, 81(3): 035201
https://doi.org/10.1103/PhysRevB.81.035201
|
137 |
M Hoffmann, J Hebling, H Hwang, K Yeh, K Nelson. Impact ionization in InSb probed by terahertz pump-terahertz probe spectroscopy. Physical Review B, 2009, 79(16): 161201
https://doi.org/10.1103/PhysRevB.79.161201
|
138 |
H Y Hwang, N C Brandt, H Farhat, A L Hsu, J Kong, K A Nelson. Nonlinear THz conductivity dynamics in P-type CVD-grown graphene. Journal of Physical Chemistry B, 2013, 117(49): 15819–15824
https://doi.org/10.1021/jp407548a
pmid: 24102144
|
139 |
J Sá, D L A Fernandes, M V Pavliuk, J Szlachetko. Controlling dark catalysis with quasi half-cycle terahertz pulses. Catalysis Science & Technology, 2017, 7(5): 1050–1054
https://doi.org/10.1039/C6CY02651F
|
140 |
S Tani, F Blanchard, K Tanaka. Ultrafast carrier dynamics in graphene under a high electric field. Physical Review Letters, 2012, 109(16): 166603
https://doi.org/10.1103/PhysRevLett.109.166603
pmid: 23215106
|
141 |
A S Reyna, C B de Araújo. High-order optical nonlinearities in plasmonic nanocomposites—a review. Advances in Optics and Photonics, 2017, 9(4): 720–724
https://doi.org/10.1364/AOP.9.000720
|
142 |
O Reshef, E Giese, M Zahirul Alam, I De Leon, J Upham, R W Boyd. Beyond the perturbative description of the nonlinear optical response of low-index materials. Optics Letters, 2017, 42(16): 3225–3228
https://doi.org/10.1364/OL.42.003225
pmid: 28809914
|
143 |
R Zhou, Z Jin, G Li, G Ma, Z Cheng, X Wang. Terahertz magnetic field induced coherent spin precession in YFeO3. Applied Physics Letters, 2012, 100(6): 061102
https://doi.org/10.1063/1.3682082
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|