Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2021, Vol. 14 Issue (1) : 4-36    https://doi.org/10.1007/s12200-020-1052-9
REVIEW ARTICLE
Intense terahertz radiation: generation and application
Yan ZHANG(), Kaixuan LI, Huan ZHAO
Department of Physics, Beijing Key Laboratory for Metamaterials and Devices, Beijing Advanced Innovation Center for Imaging Theory and Technology, Capital Normal University, Beijing 100048, China
 Download: PDF(8048 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Strong terahertz (THz) radiation provides a powerful tool to manipulate and control complex condensed matter systems. This review provides an overview of progress in the generation, detection, and applications of intense THz radiation. The tabletop intense THz sources based on Ti:sapphire laser are reviewed, including photoconductive antennas (PCAs), optical rectification sources, plasma-based THz sources, and some novel techniques for THz generations, such as topological insulators, spintronic materials, and metasurfaces. The coherent THz detection methods are summarized, and their limitations for intense THz detection are analyzed. Applications of intense THz radiation are introduced, including applications in spectroscopy detection, nonlinear effects, and switching of coherent magnons. The review is concluded with a short perspective on the generation and applications of intense THz radiation.

Keywords terahertz (THz) radiation      THz generation      THz detection      light–matter interaction     
Corresponding Author(s): Yan ZHANG   
Just Accepted Date: 30 October 2020   Online First Date: 10 December 2020    Issue Date: 19 April 2021
 Cite this article:   
Yan ZHANG,Kaixuan LI,Huan ZHAO. Intense terahertz radiation: generation and application[J]. Front. Optoelectron., 2021, 14(1): 4-36.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-020-1052-9
https://academic.hep.com.cn/foe/EN/Y2021/V14/I1/4
Fig.1  Terahertz signals generated from annealed and unannealed LT-GaAs PCAs [22]. (a) Time-domain terahertz waveforms. (b) Fourier spectra of the waveforms. The Fourier spectra were both normalized by the peak values of the respective terahertz waveforms. A 700°C annealed PCA (bow-tie type) and an unannealed one were used in these measurements. Another unannealed PCA (bow-tie type) was used as a common detector
Fig.2  Schematic diagram of terahertz emitting metal-semiconductor-metal structure [32]. (1) Interdigitated finger electrodes. (2) Semi-insulating GaAs substrate. (3) Opaque metallization shadowing one electric-field direction. The electric-field direction is indicated by arrows
Fig.3  (a) Schematic diagram and operating principle of a large-area plasmonic photoconductive emitter fabricated on a GaAs substrate [36]. (b) Power transmission of a TM-polarized optical beam incident on the GaAs substrate as a function of optical wavelength. The inset shows color plot of optical absorption in the GaAs substrate in response to a TM-polarized optical beam at 800 nm
Fig.4  (a) Principle of a binary phase mask for single-cycle terahertz pulse generation from an interdigitated photoconductive antenna (PCA). (b) Terahertz pulse shape from an interdigitated GaAs antenna at a bias field of 1.2 kV/cm and a fluence of 14 mJ/cm2 with a standard shadow mask, a 510-mm-thick binary phase mask, and no mask (offset introduced for improved clarity). The inset shows the power spectra for a shadow mask and 510 mm glass phase mask [38]
crystal effective nonlinear coefficient/(pm·V−1) index of refraction THz index of refraction THz absorption coefficient/cm−1
ZnTe 68.5 2.85 (800 nm) ~3.17 1.3
GaP 24.8 3.67 (800 nm) ~3.34 0.2
GaSe 28.0 2.85 (800 nm) ~3.72 0.5
GaAs 65.6 3.61 (800 nm) ~3.4 0.5
LiNbO3 168.0 2.25 (800 nm) no~6.8, ne~4.98 18.2
LiTaO3 170.0 2.18 (800 nm) no~6.5, ne~6.4 46.0
DAST 615.0 2.25 (1550 nm) ~2.4 41.5
Tab.1  Optical properties of common materials for optical rectification [21,42,43]
Fig.5  Phase matching in a LiNbO3 crystal
Fig.6  (a) Experimental setup for terahertz generation from a cooled LiNiO3 crystal. L1: best-form lens with f= 20 cm; L2: cylindrical lens with f= 15 cm; HWP: half-wave plate at 1030 nm. (b) Efficiency enhancement versus temperature at a fixed pump energy of 1.2 mJ [49]
Fig.7  (a) Schematic of a high energy terahertz source with tilted pulse wave front technique and electro-optic sampling (EOS) setup [50]. HWP: half-wave plate; LN: lithium niobate; OAP: 90° off-axis parabolic mirror; IS: integrating sphere; BPD: balanced photodiode. (b) Autocorrelation measurement of the pump laser pulse at its shortest duration of 30 fs. (c) Calculated chirped pulse duration as a function of the group velocity dispersion. (d) Input spectra for different group velocity dispersion measured before the laser beam enters the tilted pulse wave front setup. (e) Pump beam position relative to the edge of the LiNbO3 prism
Fig.8  Terahertz generation with a DAST crystal [53]. (a) Schematic setup for terahertz generation and electro-optic detection. 50 fs probe pulses centered at 810 nm (inset) are used for sampling the terahertz pulse with a 95-mm-thick GaP crystal. QWP: quarter wave plate; WP: Wollaston prism; BPD: balanced photodiode detector. (b) Spectrum of pump pulse. (c) Measured autocorrelation signal of terahertz pulse
Fig.9  (a) Time-domain transients and (b) corresponding normalized amplitude spectra for widely tuned center frequencies. Emitter: GaSe (thickness: 140 mm, solid curves) or AgGaS2 (thickness: 800 mm, broken curve) [6]
Fig.10  Schematic of the phase compensator incorporating a wedge pair. DM: dichroic mirror used to separate or recombine ω and 2ω beams; HWP: half-wave plate used to control the polarization of the 2ω beam [66]
Fig.11  Experimental setup for terahertz generation from a water film [72]. OAPM: off-axis parabolic mirror; HWP: half-wave plate
Fig.12  (a) Band structure of n-doped Bi2Se3 [75]. Surface electrons are directly excited by optical transitions from the conduction band (CB) to the second surface state (SS). Bulk electrons are directly excited by optical transitions from the valence band (VB) to the CB. (b) Schematic diagram of the experimental setup. WP: wave plate; WGP: wire grid polarizer
Fig.13  Metallic spintronic terahertz emitter [78]. (a) Principle of operation. (b) Time-domain transient obtained from photoexcited Ta- and Ir- capped Co20Fe60B20 thin films (3-nm-thick) and detected by a 50-µm-thick GaP crystal. Inset: Terahertz signal amplitude as a function of incident pump power. (c) Fourier spectra of terahertz signal and the extracted transient terahertz electric-field incident on the electro-optic detector
Fig.14  Experimental setup and results of a metasurface terahertz source [80]. (a) Schematic of terahertz generation and detection. The insert shows an electron micrograph of the SRR array. PM: parabolic mirror; WP: Wollaston prism. (b) Measured terahertz time-domain transient obtained by pumping the SRR electric-dipole resonance (red line) at 800 nm, magnetic-dipole resonance (black dots) at 1500 nm, and substrate only (green line) at 1500 nm, respectively. The inset shows the linear optical transmission including the electric (red curve) and magnetic (black curve) dipole resonances of the SRRs measured with the polarization of the incident light perpendicular and parallel to the gap of SRRs, respectively
Ref. peak electric field Bandwidth/THz advantage disadvantage
LAPCA [39] few hundreds kV/cm 20 high stability relatively low peak electric field
OR DAST [38] about 7 MV/cm 0.3–20 low dielectric constant low damage threshold
ZnTe [44] about 70 kV/cm 0.2–4 better phase matching conditions strong two-photon absorption
LiNbO3 [40] up to 1.2 MV/cm 0.1–2.5 high damage threshold low frequency
BNA [56] 10 MV/cm 7 highly nonlinear organic crystal low damage threshold
air plasma [64] several MV/cm 0.1–75 no concerns for damage with air phase matching sensitivity
spintronic [80] about 300 kV/cm 0–4 high potential difficulty of artificial structure design and fabrication
Tab.2  Comparison of terahertz generation techniques
Fig.15  Terahertz Z-scan experimental results for InGaAs [122]. (a) Z-scan normalized transmission of the total terahertz pulse energy measured with a pyroelectric detector after the sample (black curve: InGaAs epilayer on an InP substrate; red curve: InP substrate only). (b) Transmitted terahertz pulse electric field at different positions of the Z-scan. (c) Normalized transmission of the time integral of the modulus squared for the transmitted electric field as a function of z position along the scan. (d) Normalized electric field differential transmission as a function of time for different z positions along the scan. Note that the initial positive slope is related to the terahertz pulse duration and the population rate, while the negative slope is indicative of the carrier decay time
Fig.16  Terahertz Z-scan experimental results for n-doped silicon [123]. (a) Experimental setup. The terahertz pulses are generated by tilted-pulse-front excitation in LiNbO3 and electro-optically detected by a ZnTe crystal. (b) Open-aperture Z-scan: change in transmitted terahertz amplitude through the doped silicon sample as a function of distance from the terahertz beam focus. Also, see Ref. [73]
Fig.17  Terahertz Z-scan experimental results for graphene [132]. (a) Schematic of the experimental setup based on the titled-pulse-front technique and a LiNbO3 crystal. (b) Time-domain signal of terahertz pulses transmitted through the bare SiC substrate and the graphene sample for two terahertz electric-field strength levels, normalized to the response of the bare SiC (the inset shows a detail of the peaks of the three pulses), and (c) the transmission spectra for four different terahertz electric-field strength levels
Fig.18  Experimental results and theoretical explanation of transmission of pumped GaAs [133]. (a) Transmission of the GaAs sample of the terahertz peak under the 800 nm pump. (b) Schematic of the electronic band structure of GaAs and related excitation mechanisms
Fig.19  Calculated and experimental complex conductivity of pumped GaAs [133]. The experimental complex conductivity is extracted at a pump-probe delay time of 10 ps measured at low (a) and high (b) terahertz-probe fields. The solid blue lines in (a) and (b) are corresponding fits using the dynamic intervalley-electron-transfer model. The effect of neglecting intervalley scattering in the model is shown in (c)
Fig.20  Intense terahertz-induced transmission enhancement in monolayer graphene [134]. (a) Time-domain signals of transmitted terahertz pulses without and with the pump beam probed by 9 kV/cm peak terahertz field. (b) Differential transmission DT/T0 of the peak terahertz field as a function of the pump-probe delay time, for various optical pump fluences. (c) Differential terahertz field DE/E0 of terahertz pulses at low (9 kV/cm) and high (63 kV/cm) terahertz peak electric fields. (d) Transient differential transmission DT/T0 of the terahertz peak field as a function of the pump-probe delay time at a fixed pump fluence of 137 mJ/cm2 while the terahertz field is varied from 9 to 63 kV/cm
Fig.21  Terahertz-pump/terahertz-probe time-resolved measurement of InSb [137]. Terahertz absorption data of the doped InSb sample at (a) 80 K and (b) 200 K. Terahertz absorption spectra at various pump intensities measured at a probe delay time of 35 ps at 80 K for (c) doped and (d) undoped InSb samples
Fig.22  Experimental TPTP setup [138]. RM: recombination mirror; EO/EOS: electro-optic sampling; LN: lithium niobate; l/2: half-waveplate; l/4: quarter waveplate; WP: Wollaston prism; PD: photodiode; LIA: lock-in amplifier
Fig.23  Terahertz-induced transparency of graphene [139]. (a) Transmission spectra of CVD graphene on fused silica at different fluences. The insets are the time-domain signals and spectra of the sample and bare substrate. The transmission increases with increasing terahertz field strength. (b) Terahertz power transmission integrated over the entire terahertz pulse as a function of the terahertz fluence
Fig.24  Terahertz derived transparency in graphene [140]. (a) Schematic of ITPOP experimental setup. An 800 nm laser pulse is frequency doubled using a β-barium borate crystal. (b) Time-domain signal of the incident terahertz electric field and its spectrum. (c) Terahertz-induced normalized differential optical density of graphene at 800 nm as a function of delay time
Fig.25  Time-resolved ITPOP results [140]. Normalized differential optical density as a function of time delay with peak electric fields of (a) 170 kV/cm and (b) 300 kV/cm (experiment: circle, simulation: solid line). (c) and (d) Corresponding calculated carrier densities as a function of time delay. Dashed lines represent initial carrier density. (e) Terahertz-induced transparency of graphene as a function of a peak electric field (experiment: filled circle, simulation: solid and dashed lines). Experimental results follow a power law with an exponent of 2.5 (dotted line)
Fig.26  Time-domain transients of pump terahertz and HHG [110]. (a) Waveform of the intense terahertz source (blue, solid curve) features a Gaussian envelope (black dashed curve) with an intensity full width at half-maximum of 109 fs. Inset: corresponding spectrum. (b) Electro-optic trace of the waveform generated by the intense terahertz pulse in a GaSe single crystal (220-μm-thick). The data are recorded by an AgGaS2 detector (100-μm-thick). Insets: corresponding amplitude spectrum and experimental geometry, indicating the incident angle of 70°
Fig.27  Terahertz HHG waves in bulk GaSe [110]. (a) High-order harmonic (HH) intensity spectrum (solid line and shaded area) emitted from a GaSe single crystal. The blue dashed curve shows the computed HH intensity spectrum, obtained from a five-band model. (b) Dependence of the intensity I13 of the 13th harmonic on the incident terahertz amplitude Ea. Dashed line, scaling law of I13 E a26; dotted line, scaling law of I13 Ea. (c) Spectral interference between the frequency-doubled sixth harmonic and the 12th harmonic confirms the CEP stability of the HH radiation. (d) Model electronic band structure of GaSe between the G- and K-points, underlying the subsequent computations. Two conduction bands (CB1 and CB2) and three valence bands (VB1, VB2, and VB3) are considered. Coherent excitation of electrons (symbols), for example, from the second valence to the lowest conduction band, can proceed via interfering pathways with different scaling in powers of the terahertz field
Fig.28  Experimental results and schematic diagram for explanation of HHG in graphene [111]. (a) Spectrum of the graphene sample (red line) and bare SiO2 substrate (blue line), the odd-order HHG waves are clearly observed. (b) Illustration of the mechanism of terahertz harmonic generation in graphene, based on calculations with the thermodynamic model of intraband nonlinear terahertz conductivity of graphene
Fig.29  Terahertz nonlinear absorption in graphene nanoribbons [113]. (a) False color scanning electron micrograph of fabricated graphene ribbons. (b) Cross sectional diagram of device. (c) Measured (blue) and best fit (green) linear transmission spectrum of device. (d) Sketch of the experimental setup for the pump-probe measurements
Fig.30  Experimental results of nonlinear absorption in graphene nanoribbons [113]. (a) Measured relative change in transmission of the probe signal as a function of pump-probe time delay Dt for different pump fluences. The positive signal indicates a decrease in absorption that becomes stronger at higher pump fluences. (b) Calculated relative change in transmission based on a nonlinear thermal model for plasmonic absorption in graphene nanoribbons that includes supercollision cooling and longitudinal acoustic phonon scattering. (c) Comparison of normalized change in transmission for two different polarizations
Fig.31  Schematic representation of a non-collinear four-wave mixing experiment [117]. Two high-field terahertz pulses are focused into an InSb sample. The dashed lines illustrate the generated nonlinear signal. The pump-probe signals PP-BA (pump B/probe A) and PP-AB (pump A/probe B) propagate in the same direction as the probe pulses A and B, respectively. The coherent four-wave mixing signal depends on the relative phase of the interacting pulses and propagates in a different direction
Fig.32  Experimental results of terahertz four-wave mixing [117]. (a) Transmitted terahertz signal through InSb as a function of the electro-optic sampling delay time t and relative pulse delay t. (b) Nonlinear four-wave mixing signal. (c) Two-dimensional Fourier spectrum of pump-probe and four-wave mixing contributions located at different points of the frequency plane. (d) and (e) Time-domain pump-probe signals PP-BA and PP-AB obtained by inverse Fourier transform of the signals at kA and kB, respectively. (f) Time-domain four-wave mixing signal obtained by inverse Fourier transform of the signal at 2kAkB
Fig.33  Switching of coherent magnon [10]. (a) Schematic of terahertz-pump magneto optic-probe system. (b) Lattice geometry of NiO with the incident of terahertz magnetic field pulse. (c) Magnetic field of an incident single terahertz pulse B(t). (d) Induced Faraday rotation qF(t) as a function of pump-probe delay t. (e) Fourier amplitude spectrum of B and qF. (f) Double-pulse excitations with the second pulse in and (g) out of phase with the spin precession triggered by the first pulse. The red lines are the trace of the terahertz pulses, green lines are the experimental results for qF(t), and black lines are the simulation results
1 M Tonouchi. Cutting-edge terahertz technology. Nature Photonics, 2007, 1(2): 97–105
https://doi.org/10.1038/nphoton.2007.3
2 M C Beard, G M Turner, C A Schmuttenmaer. Terahertz spectroscopy. Journal of Physical Chemistry B, 2002, 106(29): 7146–7159
https://doi.org/10.1021/jp020579i
3 R Ulbricht, E Hendry, J Shan, T F Heinz, M Bonn. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Reviews of Modern Physics, 2011, 83(2): 543–586
https://doi.org/10.1103/RevModPhys.83.543
4 P U Jepsen, D G Cooke, M Koch. Terahertz spectroscopy and imaging-modern techniques and applications. Laser & Photonics Reviews, 2011, 5(1): 124–166
https://doi.org/10.1002/lpor.201000011
5 T Kampfrath, K Tanaka, K A Nelson. Resonant and nonresonant control over matter and light by intense terahertz transients. Nature Photonics, 2013, 7(9): 680–690
https://doi.org/10.1038/nphoton.2013.184
6 A Sell, A Leitenstorfer, R Huber. Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 MV/cm. Optics Letters, 2008, 33(23): 2767–2769
https://doi.org/10.1364/OL.33.002767 pmid: 19037420
7 X C Zhang, A Shkurinov, Y Zhang. Extreme terahertz science. Nature Photonics, 2017, 11(1): 16–18
https://doi.org/10.1038/nphoton.2016.249
8 H Hirori, K Tanaka. Dynamical nonlinear interaction of solids with strong terahertz pulses. Journal of the Physical Society of Japan, 2016, 85(8): 082001
https://doi.org/10.7566/JPSJ.85.082001
9 K Yamaguchi, M Nakajima, T Suemoto. Coherent control of spin precession motion with impulsive magnetic fields of half-cycle terahertz radiation. Physical Review Letters, 2010, 105(23): 237201
https://doi.org/10.1103/PhysRevLett.105.237201 pmid: 21231498
10 T Kampfrath, A Sell, G Klatt, A Pashkin, S Mährlein, T Dekorsy, M Wolf, M Fiebig, A Leitenstorfer, R Huber. Coherent terahertz control of antiferromagnetic spin waves. Nature Photonics, 2011, 5(1): 31–34
https://doi.org/10.1038/nphoton.2010.259
11 D Daranciang, J Goodfellow, M Fuchs, H Wen, S Ghimire, D A Reis, H Loos, A S Fisher, A M Lindenberg. Single-cycle terahertz pulses with >0.2 V/Å field amplitudes via coherent transition radiation. Applied Physics Letters, 2011, 99(14): 141117
https://doi.org/10.1063/1.3646399
12 H T Li, Y L Lu, Z G He, Q K Jia, L Wang. Generation of intense narrow-band tunable terahertz radiation from highly bunched electron pulse train. Journal of Infrared, Millimeter and Terahertz Waves, 2016, 37(7): 649–657
https://doi.org/10.1007/s10762-016-0258-9
13 L Hou, W Shi. An LT-GaAs terahertz photoconductive antenna with high emission power, low noise, and good stability. IEEE Transactions on Electron Devices, 2013, 60(5): 1619–1624
https://doi.org/10.1109/TED.2013.2253467
14 M C Beard, G M Turner, C A Schmuttenmaer. Subpicosecond carrier dynamics in low-temperature grown GaAs as measured by time resolved terahertz spectroscopy. Journal of Applied Physics, 2001, 90(12): 5915–5923
https://doi.org/10.1063/1.1416140
15 A M Buryakov, M S Ivanov, S A Nomoev, D I Khusyainov, E D Mishina, V A Khomchenko, I S Vasilevskii, A N Vinichenko, K I Kozlovskii, A A Chistyakov, J A Paixão. An advanced approach to control the electro-optical properties of LT-GaAs based terahertz photoconductive antenna. Materials Research Bulletin, 2020, 122: 110688
https://doi.org/10.1016/j.materresbull.2019.110688
16 F E Doany, D Grischkowsky, C C Chi. Carrier lifetime versus ion-implantation dose in silicon on sapphire. Applied Physics Letters, 1987, 50(8): 460–462
https://doi.org/10.1063/1.98173
17 S Y Sarkisov, F D Safiullin, M S Skakunov, O P Tolbanov, A V Tyazhev, M M Nazarov, A P Shkurinov. Dipole antennas based on SI-GaAs:Cr for generation and detection of terahertz radiation. Russian Physics Journal, 2013, 55(8): 890–898
https://doi.org/10.1007/s11182-013-9897-7
18 J C Rode, H W Chiang, P Choudhary, V Jain, B J Thibeault, W J Mitchell, M J W Rodwell, M Urteaga, D Loubychev, A Snyder, Y Wu, J M Fastenau, A W K Liu. Indium phosphide heterobipolar transistor technology beyond 1-THz bandwidth. IEEE Journal of Transactions on Electron Devices, 2015, 62(9): 2779–2785
https://doi.org/10.1109/TED.2015.2455231
19 F Simoens, J Meilhan, B Delplanque, S Gidon, G Lasfargues, J L Dera, D T Nguyen, J L Ouvrier-Buffet, S Pocas, T Maillou, O Cathabard, S Barbieri. Real-time imaging with THz fully-customized uncooled amorphous-silicon microbolometer focal plane arrays. Proceedings of the Society for Photo-Instrumentation Engineers, 2012, 8363: 83630D, 83630D-12
https://doi.org/10.1117/12.919185
20 D You, R R Jones, P H Bucksbaum, D R Dykaar. Generation of high-power sub-single-cycle 500-fs electromagnetic pulses. Optics Letters, 1993, 18(4): 290–292
https://doi.org/10.1364/OL.18.000290 pmid: 19802113
21 H A Hafez, X Chai, A Ibrahim, S Mondal, D Férachou, X Ropagnol, T Ozaki. Intense terahertz radiation and their applications. Journal of Optics, 2016, 18(9): 093004
https://doi.org/10.1088/2040-8978/18/9/093004
22 S Kasai, M Watanabe, T Ouchi. Improved terahertz wave intensity in photoconductive antennas formed of annealed low-temperature grown GaAs. Japanese Journal of Applied Physics, 2007, 46(7A): 4163–4165
https://doi.org/10.1143/JJAP.46.4163
23 H Yoneda, K Tokuyama, H Nagata. Generation of high-peak-power THz radiation by using diamond photoconductive antenna array. In: Proceedings of the 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS). San Diego: IEEE, 2001, 644–645
24 S Ono, H Murakami, A Quema, G Diwa, N Sarukura, R Nagasaka, Y Ichikawa, H Ogino, E Ohshima, A Yoshikawa, T Fukuda. Generation of terahertz radiation using zinc oxide as photoconductive material excited by ultraviolet pulses. Applied Physics Letters, 2005, 87(26): 261112
https://doi.org/10.1063/1.2158514
25 K Ahi. Review of GaN-based devices for terahertz operation. Optical Engineering (Redondo Beach, Calif.), 2017, 56(09): 090901
https://doi.org/10.1117/1.OE.56.9.090901
26 P S Cho, P T Ho, J Goldhar, C H Lee. Photoconductivity in ZnSe under high electric fields. IEEE Journal of Quantum Electronics, 1994, 30(6): 1489–1497
https://doi.org/10.1109/3.299474
27 I Kikuma, M Matsuo, T Komuro. In situ annealing of melt-Grown ZnSe crystals under Zn partial pressure. Japanese Journal of Applied Physics, 1992, 31(Part 2, No. 5A): L531–L534
https://doi.org/10.1143/JJAP.31.L531
28 X Ropagnol, M Bouvier, M Reid, T Ozaki. Improvement in thermal barriers to intense terahertz generation from photoconductive antennas. Journal of Applied Physics, 2014, 116(4): 043107
https://doi.org/10.1063/1.4891451
29 O Imafuji, B P Singh, Y Hirose, Y Fukushima, S Takigawa. High power subterahertz electromagnetic wave radiation from GaN photoconductive switch. Applied Physics Letters, 2007, 91(7): 071112
https://doi.org/10.1063/1.2771528
30 M Xu, M Mittendorff, R J B Dietz, H Künzel, B Sartorius, T Göbel, H Schneider, M Helm, S Winnerl. Terahertz generation and detection with InGaAs-based large-area photoconductive devices excited at 1.55 µm. Applied Physics Letters, 2013, 103(25): 251114
https://doi.org/10.1063/1.4855616
31 B Salem, D Morris, V Aimez, J Beerens, J Beauvais, D Houde. Pulsed photoconductive antenna terahertz sources made on ion-implanted GaAs substrates. Journal of Physics Condensed Matter, 2005, 17(46): 7327–7333
https://doi.org/10.1088/0953-8984/17/46/016
32 A Dreyhaupt, S Winnerl, T Dekorsy, M Helm. High-intensity terahertz radiation from a microstructured large-area photoconductor. Applied Physics Letters, 2005, 86(12): 121114
https://doi.org/10.1063/1.1891304
33 X Ropagnol, R Morandotti, T Ozaki, M Reid. Toward high-power terahertz emitters using large aperture ZnSe photoconductive antennas. IEEE Journal of Photonics, 2011, 3(2): 174–186
https://doi.org/10.1109/JPHOT.2011.2116112
34 T Hattori, K Egawa, S I Ookuma, T Itatani. Intense terahertz pulses from large-aperture antenna with interdigitated electrodes. Japanese Journal of Applied Physics, 2006, 45(15): L422–L424
https://doi.org/10.1143/JJAP.45.L422
35 M Beck, H Schäfer, G Klatt, J Demsar, S Winnerl, M Helm, T Dekorsy. Impulsive terahertz radiation with high electric fields from an amplifier-driven large-area photoconductive antenna. Optics Express, 2010, 18(9): 9251–9257
https://doi.org/10.1364/OE.18.009251 pmid: 20588772
36 N T Yardimci, S H Yang, C W Berry, M Jarrahi. High-power terahertz generation using large-area plasmonic photoconductive emitters. IEEE Transactions on Terahertz Science and Technology, 2015, 5(2): 223–229
https://doi.org/10.1109/TTHZ.2015.2395417
37 J Madéo, N Jukam, D Oustinov, M Rosticher, R Rungsawang, J Tignon, S S Dhillon. Frequency tunable terahertz interdigitated photoconductive antennas. Electronics Letters, 2010, 46(9): 611–613
https://doi.org/10.1049/el.2010.0440
38 X Ropagnol, R Morandotti, T Ozaki, M Reid. THz pulse shaping and improved optical-to-THz conversion efficiency using a binary phase mask. Optics Letters, 2011, 36(14): 2662–2664
https://doi.org/10.1364/OL.36.002662 pmid: 21765501
39 X Ropagnol, M Khorasaninejad, M Raeiszadeh, S Safavi-Naeini, M Bouvier, C Y Côté, A Laramée, M Reid, M A Gauthier, T Ozaki. Intense THz Pulses with large ponderomotive potential generated from large aperture photoconductive antennas. Optics Express, 2016, 24(11): 11299–11311
https://doi.org/10.1364/OE.24.011299 pmid: 27410061
40 X Ropagnol, X Chai, S M Raeis-Zadeh, S Safavi-Naeini, M Kirouac-Turmel, M Bouvier, C Y Côté, M Reid, M A Gauthier, T Ozaki. Influence of gap size on intense THz generation from ZnSe interdigitated large aperture photoconductive antennas. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(4): 1–8
https://doi.org/10.1109/JSTQE.2017.2662658
41 W Shi, L Hou, X M Wang. High effective terahertz radiation from semi-insulating-GaAs photoconductive antennas with ohmic contact electrodes. Journal of Applied Physics, 2011, 110(2): 023111
https://doi.org/10.1063/1.3611397
42 J Hebling, K L Yeh, M C Hoffmann, B Bartal, K A Nelson. Generation of high-power terahertz pules by tilted-pulse-front excitation and their application possibilities. Journal of the Optical Society of America B, Optical Physics, 2008, 25(7): B6–B19
https://doi.org/10.1364/JOSAB.25.0000B6
43 F Blanchard, G Sharma, L Razzari, X Ropagnol, H C Bandulet, F Vidal, R Morandotti, J C Kieffer, T Ozaki, H Tiedje, H Haugen, M Reid, F Hegmann. Generation of intense terahertz radiation via optical methods. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(1): 5–16
https://doi.org/10.1109/JSTQE.2010.2047715
44 F Blanchard, L Razzari, H C Bandulet, G Sharma, R Morandotti, J C Kieffer, T Ozaki, M Reid, H F Tiedje, H K Haugen, F A Hegmann. Generation of 1.5 µJ single-cycle terahertz pulses by optical rectification from a large aperture ZnTe crystal. Optics Express, 2007, 15(20): 13212–13220
https://doi.org/10.1364/OE.15.013212 pmid: 19550589
45 T Löffler, T Hahn, M Thomson, F Jacob, H Roskos. Large-area electro-optic ZnTe terahertz emitters. Optics Express, 2005, 13(14): 5353–5362
https://doi.org/10.1364/OPEX.13.005353 pmid: 19498529
46 J A Fülöp, L Pálfalvi, S Klingebiel, G Almási, F Krausz, S Karsch, J Hebling. Generation of sub-mJ terahertz pulses by optical rectification. Optics Letters, 2012, 37(4): 557–559
https://doi.org/10.1364/OL.37.000557 pmid: 22344105
47 F Blanchard, X Ropagnol, H Hafez, H Razavipour, M Bolduc, R Morandotti, T Ozaki, D G Cooke. Effect of extreme pump pulse reshaping on intense terahertz emission in lithium niobate at multimilliJoule pump energies. Optics Letters, 2014, 39(15): 4333–4336
https://doi.org/10.1364/OL.39.004333 pmid: 25078170
48 L Pálfalvi, J Hebling, G Almasi, A Peter, K Polgar, K Lengyel, R Szipocs. Nonlinear refraction and absorption of Mg doped stoichiometric and congruent LiNbO3. Journal of Applied Physics, 2004, 95(3): 902–908
https://doi.org/10.1063/1.1635993
49 S W Huang, E Granados, W R Huang, K H Hong, L E Zapata, F X Kärtner. High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate. Optics Letters, 2013, 38(5): 796–798
https://doi.org/10.1364/OL.38.000796 pmid: 23455302
50 X J Wu, J L Ma, B L Zhang, S S Chai, Z J Fang, C Y Xia, D Y Kong, J G Wang, H Liu, C Q Zhu, X Wang, C J Ruan, Y T Li. Highly efficient generation of 0.2 mJ terahertz pulses in lithium niobate at room temperature with sub-50 fs chirped Ti:sapphire laser pulses. Optics Express, 2018, 26(6): 7107–7116
https://doi.org/10.1364/OE.26.007107 pmid: 29609397
51 T I Oh, Y J Yoo, Y S You, K Y Kim. Generation of strong terahertz fields exceeding 8 MV/cm at 1 kHz and real-time beam profiling. Applied Physics Letters, 2014, 105(4): 041103
https://doi.org/10.1063/1.4891678
52 M Jazbinsek, U Puc, A Abina, A Zidansek. Organic crystal for THz photonics. Applied Sciences (Basel, Switzerland), 2019, 9(5): 882
https://doi.org/10.3390/app9050882
53 C P Hauri, C Ruchert, C Vicario, F Ardana. Strong-field single-cycle THz pulses generated in an organic crystal. Applied Physics Letters, 2011, 99(16): 161116
https://doi.org/10.1063/1.3655331
54 M Shalaby, C P Hauri. Demonstration of a low-frequency three-dimensional terahertz bullet with extreme brightness. Nature Communications, 2015, 6(1): 5976
https://doi.org/10.1038/ncomms6976 pmid: 25591665
55 B Liu, H Bromberger, A Cartella, T Gebert, M Först, A Cavalleri. Generation of narrowband, high-intensity, carrier-envelope phase-stable pulses tunable between 4 and 18 THz. Optics Letters, 2017, 42(1): 129–131
https://doi.org/10.1364/OL.42.000129 pmid: 28059195
56 H Zhao, Y Tan, T Wu, G Steinfeld, Y Zhang, C L Zhang, L L Zhang, M Shalaby. Efficient broadband terahertz generation from organic crystal BNA using near infrared pump. Applied Physics Letters, 2019, 114(24): 241101
https://doi.org/10.1063/1.5098855
57 R A Kaindl, F Eickemeyer, M Woerner, T Elsaesser. Broadband phase-matched difference frequency mixing of femtosecond pulses in GaSe: experiment and theory. Applied Physics Letters, 1999, 75(8): 1060–1062
https://doi.org/10.1063/1.124596
58 F Junginger, A Sell, O Schubert, B Mayer, D Brida, M Marangoni, G Cerullo, A Leitenstorfer, R Huber. Single-cycle multiterahertz transients with peak fields above 10 MV/cm. Optics Letters, 2010, 35(15): 2645–2647
https://doi.org/10.1364/OL.35.002645 pmid: 20680086
59 H Hamster, A Sullivan, S Gordon, W White, R W Falcone. Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Physical Review Letters, 1993, 71(17): 2725–2728
https://doi.org/10.1103/PhysRevLett.71.2725 pmid: 10054760
60 W F Sun, Y S Zhou, X K Wang, Y Zhang. External electric field control of THz pulse generation in ambient air. Optics Express, 2008, 16(21): 16573–16580
https://doi.org/10.1364/OE.16.016573 pmid: 18852766
61 F Bakhtiari, M Esmaeilzadeh, B Ghafary. Terahertz radiation with high power and high efficiency in a magnetized plasma. Physics of Plasmas, 2017, 24(7): 073112
https://doi.org/10.1063/1.4991395
62 X Xie, J Dai, X C Zhang. Coherent control of THz wave generation in ambient air. Physical Review Letters, 2006, 96(7): 075005
https://doi.org/10.1103/PhysRevLett.96.075005 pmid: 16606102
63 A D Koulouklidis, C Gollner, V Shumakova, V Y Fedorov, A Pugžlys, A Baltuška, S Tzortzakis. Observation of extremely efficient terahertz generation from mid-infrared two-color laser filaments. Nature Communications, 2020, 11(1): 292
https://doi.org/10.1038/s41467-019-14206-x pmid: 31941895
64 K Y Kim, A J Taylor, J H Glownia, G Rodriguez. Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions. Nature Photonics, 2008, 2(10): 605–609
https://doi.org/10.1038/nphoton.2008.153
65 D J Cook, R M Hochstrasser. Intense terahertz pulses by four-wave rectification in air. Optics Letters, 2000, 25(16): 1210–1212
https://doi.org/10.1364/OL.25.001210 pmid: 18066171
66 J M Dai, X C Zhang. Terahertz wave generation from gas plasma using a phase compensator with attosecond phase-control accuracy. Applied Physics Letters, 2009, 94(2): 021117
https://doi.org/10.1063/1.3068501
67 L L Zhang, W M Wang, T Wu, R Zhang, S J Zhang, C L Zhang, Y Zhang, Z M Sheng, X C Zhang. Observation of terahertz radiation via the two-color laser scheme with uncommon frequency ratios. Physical Review Letters, 2017, 119(23): 235001
https://doi.org/10.1103/PhysRevLett.119.235001 pmid: 29286697
68 X Y Peng, C Li, M Chen, T Toncian, R Jung, O Willi, Y T Li, W M Wang, S J Wang, F Liu, A Pukhov, Z M Sheng, J Zhang. Strong terahertz radiation from air plasmas generated by an aperture-limited Gaussian pump laser beam. Applied Physics Letters, 2009, 94(10): 101502
https://doi.org/10.1063/1.3098357
69 K Y Kim, J H Glownia, A J Taylor, G Rodriguez. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields. Optics Express, 2007, 15(8): 4577–4584
https://doi.org/10.1364/OE.15.004577 pmid: 19532704
70 G Q Liao, Y T Li, Y H Zhang, H Liu, X L Ge, S Yang, W Q Wei, X H Yuan, Y Q Deng, B J Zhu, Z Zhang, W M Wang, Z M Sheng, L M Chen, X Lu, J L Ma, X Wang, J Zhang. Demonstration of coherent terahertz transition radiation from relativistic laser-solid interactions. Physical Review Letters, 2016, 116(20): 205003
https://doi.org/10.1103/PhysRevLett.116.205003 pmid: 27258873
71 Y Tian, J S Liu, Y F Bai, S Y Zhou, H Y Sun, W W Liu, J Y Zhao, R X Li, Z Z Xu. Femtosecond-laser-driven wire-guided helical undulator for intense terahertz radiation. Nature Photonics, 2017, 11(4): 242–246
https://doi.org/10.1038/nphoton.2017.16
72 Q Jin, Y E, K Williams, J Dai, X C Zhang. Observation of broadband terahertz wave generation from liquid water. Applied Physics Letters, 2017, 111(7): 071103
https://doi.org/10.1063/1.4990824
73 I Dey, K Jana, V Y Fedorov, A D Koulouklidis, A Mondal, M Shaikh, D Sarkar, A D Lad, S Tzortzakis, A Couairon, G R Kumar. Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids. Nature Communications, 2017, 8(1): 1184
https://doi.org/10.1038/s41467-017-01382-x pmid: 29084961
74 L L Zhang, W M Wang, T Wu, S J Feng, K Kang, C L Zhang, Y Zhang, Y T Li, Z M Sheng, X C Zhang. Strong terahertz radiation from a liquid-water line. Physical Review Applied, 2019, 12(1): 014005
https://doi.org/10.1103/PhysRevApplied.12.014005
75 L G Zhu, B Kubera, K Fai Mak, J Shan. Effect of surface states on terahertz emission from the Bi2Se3 surface. Scientific Reports, 2015, 5(1): 10308
https://doi.org/10.1038/srep10308 pmid: 25988722
76 C W Luo, H J Chen, C M Tu, C C Lee, S A Ku, W Y Tzeng, T T Yeh, M C Chiang, H J Wang, W C Chu, J Y Lin, K H Wu, J Y Juang, T Kobayashi, C M Cheng, C H Chen, K D Tsuei, H Berger, R Sankar, F C Chou, H D Yang. THz generation and detection on Dirac Fermions in topological insulators. Advanced Optical Materials, 2013, 1(11): 804–808
https://doi.org/10.1002/adom.201300221
77 T Seifert, S Jaiswal, U Martens, J Hannegan, L Braun, P Maldonado, F Freimuth, A Kronenberg, J Henrizi, I Radu, E Beaurepaire, Y Mokrousov, P M Oppeneer, M Jourdan, G Jakob, D Turchinovich, L M Hayden, M Wolf, M Münzenberg, M Kläui, T Kampfrath. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation. Nature Photonics, 2016, 10(7): 483–488
https://doi.org/10.1038/nphoton.2016.91
78 D Yang, J Liang, C Zhou, L Sun, R Zheng, S N Luo, Y Z Wu, J B Qi. Powerful and tunable THz emitters based on the Fe/Pt magnetic heterostructure. Advanced Optical Materials, 2016, 4(12): 1944–1949
https://doi.org/10.1002/adom.201600270
79 T Seifert, S Jaiswal, M Sajadi, G Jakob, S Winnerl, M Wolf, M Kläui, T Kampfrath. Ultrabroadband single-cycle terahertz pulses with peak fields of 300 kV·cm−1 from a metallic spintronic emitter. Applied Physics Letters, 2017, 110: 252402
https://doi.org/10.1063/1.4986755
80 L Luo, I Chatzakis, J Wang, F B P Niesler, M Wegener, T Koschny, C M Soukoulis. Broadband terahertz generation from metamaterials. Nature Communications, 2014, 5(1): 3055
https://doi.org/10.1038/ncomms4055 pmid: 24402324
81 S Keren-Zur, M Tal, S Fleischer, D M Mittleman, T Ellenbogen. Generation of spatiotemporally tailored terahertz wavepackets by nonlinear metasurfaces. Nature Communications, 2019, 10(1): 1778
https://doi.org/10.1038/s41467-019-09811-9 pmid: 30992447
82 X Ropagnol, F Blanchard, T Ozaki, M Reid. Intense terahertz generation at low frequencies using an interdigitated ZnSe large aperture photoconductive antenna. Applied Physics Letters, 2013, 103(16): 161108
https://doi.org/10.1063/1.4825165
83 H Hirori, A A Doi, F Blanchard, K Tanaka. Single cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3. Applied Physics Letters, 2011, 98(9): 091106
https://doi.org/10.1063/1.3560062
84 P R Smith, D H Auston, M C Nuss. Subpicosecond photoconducting dipole antennas. IEEE Journal of Quantum Electronics, 1988, 24(2): 255–260
https://doi.org/10.1109/3.121
85 Q Wu, X C Zhang. Free-space electro-optic sampling of terahertz beams. Applied Physics Letters, 1995, 67(24): 3523–3525
https://doi.org/10.1063/1.114909
86 C Fattinger, D R Grischkowsky. Terahertz beams. Applied Physics Letters, 1989, 54(6): 490–492
https://doi.org/10.1063/1.100958
87 M van Exter, D R Grischkowsky. Characterization of an optoelectronic terahertz beam system. IEEE Transactions on Microwave Theory and Techniques, 1990, 38(11): 1684–1691
https://doi.org/10.1109/22.60016
88 Y S Lee. Principles of Terahertz Science and Technology. Berlin: Springer, 2008
89 A Singh, S Pal, H Surdi, S S Prabhu, S Mathimalar, V Nanal, R G Pillay, G H Döhler. Carbon irradiated semi insulating GaAs for photoconductive terahertz pulse detection. Optics Express, 2015, 23(5): 6656–6661
https://doi.org/10.1364/OE.23.006656 pmid: 25836882
90 T A Liu, M Tani, M Nakajima, M Hangyo, C L Pan. Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs. Applied Physics Letters, 2003, 83(7): 1322–1324
https://doi.org/10.1063/1.1604191
91 T Hattori, K Tukamoto, H Nakatsuka. Time-resolved study of intense terahertz pulses generated by a large aperture photoconductive antenna. Japanese Journal of Applied Physics, 2001, 40(Part 1, No. 8): 4907–4912
https://doi.org/10.1143/JJAP.40.4907
92 P U Jepsen, R H Jacobsen, S R Keiding. Generation and detection of terahertz pulses from biased semiconductor antennas. Journal of the Optical Society of America B, Optical Physics, 1996, 13(11): 2424–2436
https://doi.org/10.1364/JOSAB.13.002424
93 G Sharma, I Al-Naib, H Hafez, R Morandotti, D G Cooke, T Ozaki. Carrier density dependence of the nonlinear absorption of intense THz radiation in GaAs. Optics Express, 2012, 20(16): 18016–18024
https://doi.org/10.1364/OE.20.018016 pmid: 23038349
94 G Gallot, J Zhang, R McGowan, T Jeon, D Grischkowsky. Measurements of the THz absorption and dispersion of ZnTe and their relevance to the electro-optic detection of THz radiation. Applied Physics Letters, 1999, 74(23): 3450–3452
https://doi.org/10.1063/1.124124
95 C Kübler, R Huber, S Tübel, A Leitenstorfer. Ultrabroadband detection of multi-terahertz field transients with GaSe electro-optic sensors: approaching the near infrared. Applied Physics Letters, 2004, 85(16): 3360–3362
https://doi.org/10.1063/1.1808232
96 K Reimann, R P Smith, A M Weiner, T Elsaesser, M Woerner. Direct field-resolved detection of terahertz transients with amplitudes of megavolts per centimeter. Optics Letters, 2003, 28(6): 471–473
https://doi.org/10.1364/OL.28.000471 pmid: 12659283
97 M Schall, H Helm, S R Keiding. Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy. International Journal of Infrared and Millimeter Waves, 1999, 20(4): 595–604
https://doi.org/10.1023/A:1022636421426
98 G Sharma, K Singh, I Al-Naib, R Morandotti, T Ozaki. Terahertz detection using spectral domain interferometry. Optics Letters, 2012, 37(20): 4338–4340
https://doi.org/10.1364/OL.37.004338 pmid: 23073455
99 J Dai, X Xie, X C Zhang. Detection of broadband terahertz waves with a laser-induced plasma in gases. Physical Review Letters, 2006, 97(10): 103903
https://doi.org/10.1103/PhysRevLett.97.103903 pmid: 17025819
100 N Karpowicz, J Dai, X Lu, Y Chen, M Yamaguchi, H Zhao, X C Zhang, L Zhang, C Zhang, M Price-Gallagher, C Fletcher, O Mamer, A Lesimple, K Johnson. Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”. Applied Physics Letters, 2008, 92(1): 011131
https://doi.org/10.1063/1.2828709
101 I C Ho, X Guo, X C Zhang. Design and performance of reflective terahertz air-biased-coherent-detection for time-domain spectroscopy. Optics Express, 2010, 18(3): 2872–2883
https://doi.org/10.1364/OE.18.002872 pmid: 20174116
102 J Liu, X C Zhang. Terahertz-radiation-enhanced emission of fluorescence from gas plasma. Physical Review Letters, 2009, 103(23): 235002
https://doi.org/10.1103/PhysRevLett.103.235002 pmid: 20366153
103 J L Liu, X C Zhang. Plasma characterization using terahertz-wave-enhanced fluorescence. Applied Physics Letters, 2010, 96(4): 041505
https://doi.org/10.1063/1.3291676
104 J L Liu, J M Dai, S L Chin, X C Zhang. Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases. Nature Photonics, 2010, 4(9): 627–631
https://doi.org/10.1038/nphoton.2010.165
105 B Clough, J Liu, X C Zhang. Laser-induced photoacoustics influenced by single-cycle terahertz radiation. Optics Letters, 2010, 35(21): 3544–3546
https://doi.org/10.1364/OL.35.003544 pmid: 21042344
106 D Turchinovich, J M Hvam, M C Hoffmann. Self-phase modulation of a single-cycle terahertz pulse by nonlinear free-carrier response in a semiconductor. Physical Review B, 2012, 85(20): 201304
https://doi.org/10.1103/PhysRevB.85.201304
107 M Paul, Y Chang, Z Thompson, A Stickel, J Wardini, H Choi, E Minot, B Hou, J Nees, T Norris, Y Lee. High-field terahertz response of graphene. New Journal of Physics, 2013, 15(8): 085019
https://doi.org/10.1088/1367-2630/15/8/085019
108 P Bowlan, E Martinez-Moreno, K Reimann, T Elsaesser, M Woerner. Ultrafast terahertz response of multilayer graphene in the nonperturbative regime. Physical Review B, 2014, 89(4): 041408
https://doi.org/10.1103/PhysRevB.89.041408
109 M Melnik, I Vorontsova, S Putilin, A Tcypkin, S Kozlov. Methodical inaccuracy of the Z-scan method for few-cycle terahertz pulses. Scientific Reports, 2019, 9(1): 9146
https://doi.org/10.1038/s41598-019-45735-6 pmid: 31235853
110 O Schubert, M Hohenleutner, F Langer, B Urbanek, C Lange, U Huttner, D Golde, T Meier, M Kira, S Koch, R Huber. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nature Photonics, 2014, 8(2): 119–123
https://doi.org/10.1038/nphoton.2013.349
111 H A Hafez, S Kovalev, J C Deinert, Z Mics, B Green, N Awari, M Chen, S Germanskiy, U Lehnert, J Teichert, Z Wang, K J Tielrooij, Z Liu, Z Chen, A Narita, K Müllen, M Bonn, M Gensch, D Turchinovich. Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions. Nature, 2018, 561(7724): 507–511
https://doi.org/10.1038/s41586-018-0508-1 pmid: 30202091
112 Y M Bahk, B J Kang, Y S Kim, J Y Kim, W T Kim, T Y Kim, T Kang, J Rhie, S Han, C H Park, F Rotermund, D S Kim. Electromagnetic saturation of angstrom-sized quantum barriers at terahertz frequencies. Physical Review Letters, 2015, 115(12): 125501
https://doi.org/10.1103/PhysRevLett.115.125501 pmid: 26431000
113 M M Jadidi, J C König-Otto, S Winnerl, A B Sushkov, H D Drew, T E Murphy, M Mittendorff. Nonlinear terahertz absorption of graphene plasmons. Nano Letters, 2016, 16(4): 2734–2738
https://doi.org/10.1021/acs.nanolett.6b00405 pmid: 26978242
114 F Giorgianni, E Chiadroni, A Rovere, M Cestelli-Guidi, A Perucchi, M Bellaveglia, M Castellano, D Di Giovenale, G Di Pirro, M Ferrario, R Pompili, C Vaccarezza, F Villa, A Cianchi, A Mostacci, M Petrarca, M Brahlek, N Koirala, S Oh, S Lupi. Strong nonlinear terahertz response induced by Dirac surface states in Bi2Se3 topological insulator. Nature Communications, 2016, 7(1): 11421
https://doi.org/10.1038/ncomms11421 pmid: 27113395
115 C Vicario, M Shalaby, C P Hauri. Subcycle extreme nonlinearities in GaP induced by an ultrastrong terahertz field. Physical Review Letters, 2017, 118(8): 083901
https://doi.org/10.1103/PhysRevLett.118.083901 pmid: 28282208
116 O V Chefonov, A V Ovchinnikov, M B Agranat, V E Fortov, E S Efimenko, A N Stepanov, A B Savel’ev. Nonlinear transfer of an intense few-cycle terahertz pulse through opaque n-doped Si. Physical Review B, 2018, 98(16): 165206
https://doi.org/10.1103/PhysRevB.98.165206
117 A Pashkin, A Sell, T Kampfrath, R Huber. Electric and magnetic terahertz nonlinearities resolved on the sub-cycle scale. New Journal of Physics, 2013, 15(6): 065003
https://doi.org/10.1088/1367-2630/15/6/065003
118 K Yamaguchi, M Nakajima, T Suemoto. Coherent control of spin precession motion with impulsive magnetic fields of half-cycle terahertz radiation. Physical Review Letters, 2010, 105(23): 237201
https://doi.org/10.1103/PhysRevLett.105.237201 pmid: 21231498
119 Z Wang, M Pietz, J Walowski, A Förster, M I Lepsa, M Münzenberg. Spin dynamics triggered by subterahertz magnetic field pulses. Journal of Applied Physics, 2008, 103(12): 123905
https://doi.org/10.1063/1.2940734
120 E Beaurepaire, J Merle, A Daunois, J Bigot. Ultrafast spin dynamics in ferromagnetic nickel. Physical Review Letters, 1996, 76(22): 4250–4253
https://doi.org/10.1103/PhysRevLett.76.4250 pmid: 10061239
121 X Li, T Qiu, J Zhang, E Baldini, J Lu, A M Rappe, K A Nelson. Terahertz field-induced ferroelectricity in quantum paraelectric SrTiO3. Science, 2019, 364(6445): 1079–1082
https://doi.org/10.1126/science.aaw4913 pmid: 31197011
122 L Razzari, F Su, G Sharma, F Blanchard, A Ayesheshim, H Bandulet, H Morandotti, J Kieffer, T Ozaki, M Reid, F Hegmann. Nonlinear ultrafast modulation of the optical absorption of intense few-cycle terahertz pulses in n-doped semiconductors. Physical Review B, 2009, 79(19): 193204
https://doi.org/10.1103/PhysRevB.79.193204
123 G Kaur, P Han, X Zhang. Terahertz induced nonlinear effects in doped Silicon observed by open-aperture Z-scan. In: Proceedings of the 35th International Conference on Infrared, Millimeter, and Terahertz Waves. Rome: IEEE, 2010, 5613068
124 J H Strait, H Wang, S Shivaraman, V Shields, M Spencer, F Rana. Very slow cooling dynamics of photoexcited carriers in graphene observed by optical-pump terahertz-probe spectroscopy. Nano Letters, 2011, 11(11): 4902–4906
https://doi.org/10.1021/nl202800h pmid: 21973122
125 S Boubanga-Tombet, S Chan, T Watanabe, A Satou, V Ryzhii, T Otsuji. Ultrafast carrier dynamics and terahertz emission in optically pumped graphene at room temperature. Physical Review B, 2012, 85(3): 035443
https://doi.org/10.1103/PhysRevB.85.035443
126 C J Docherty, C T Lin, H J Joyce, R J Nicholas, L M Herz, L J Li, M B Johnston. Extreme sensitivity of graphene photoconductivity to environmental gases. Nature Communications, 2012, 3(1): 1228
https://doi.org/10.1038/ncomms2235 pmid: 23187628
127 G Jnawali, Y Rao, H Yan, T F Heinz. Observation of a transient decrease in terahertz conductivity of single-layer graphene induced by ultrafast optical excitation. Nano Letters, 2013, 13(2): 524–530
https://doi.org/10.1021/nl303988q pmid: 23330567
128 K J Tielrooij, J C W Song, S A Jensen, A Centeno, A Pesquera, A Zurutuza Elorza, M Bonn, L S Levitov, F H L Koppens. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nature Physics, 2013, 9(4): 248–252
https://doi.org/10.1038/nphys2564
129 A Wright, X Xu, J Cao, C Zhang. Strong nonlinear optical response of graphene in the terahertz regime. Applied Physics Letters, 2009, 95(7): 072101
https://doi.org/10.1063/1.3205115
130 K Ishikawa. Nonlinear optical response of graphene in time domain. Physical Review B, 2012, 85: 035443
131 S Shareef, Y Ang, C Zhang. Room-temperature strong terahertz photon mixing in graphene. Journal of the Optical Society of America B, Optical Physics, 2012, 29(3): 274–279
https://doi.org/10.1364/JOSAB.29.000274
132 H A Hafez, I Al-Naib, K Oguri, Y Sekine, M M Dignam, A Ibrahim, D G Cooke, S Tanaka, F Komori, H Hibino, T Ozaki. Nonlinear transmission of an intense terahertz field through monolayer graphene. AIP Advances, 2014, 4(11): 117118
https://doi.org/10.1063/1.4902096
133 F H Su, F Blanchard, G Sharma, L Razzari, A Ayesheshim, T L Cocker, L V Titova, T Ozaki, J C Kieffer, R Morandotti, M Reid, F A Hegmann. Terahertz pulse induced intervalley scattering in photoexcited GaAs. Optics Express, 2009, 17(12): 9620–9629
https://doi.org/10.1364/OE.17.009620 pmid: 19506611
134 H Hafez, I Al-Naib, M Dignam, Y Sekine, K Oguri, F Blanchard, D Cooke, S Tanaka, F Komori, H Hibino, T Ozaki. Nonlinear terahertz field-induced carrier dynamics in photoexcited epitaxial monolayer graphene. Physical Review B, 2015, 91(3): 035422
https://doi.org/10.1103/PhysRevB.91.035422
135 M Hoffmann, J Hebling, H Hwang, K Yeh, K Nelson. THz-pump/THz-probe spectroscopy of semiconductors at high field strengths. Journal of the Optical Society of America B, Optical Physics, 2009, 26(9): A29–A34
https://doi.org/10.1364/JOSAB.26.000A29
136 J Hebling, M Hoffmann, H Hwang, K Yeh, K Nelson. Observation of nonequilibrium carrier distribution in Ge, Si, and GaAs by terahertz pump–terahertz probe measurements. Physical Review B, 2010, 81(3): 035201
https://doi.org/10.1103/PhysRevB.81.035201
137 M Hoffmann, J Hebling, H Hwang, K Yeh, K Nelson. Impact ionization in InSb probed by terahertz pump-terahertz probe spectroscopy. Physical Review B, 2009, 79(16): 161201
https://doi.org/10.1103/PhysRevB.79.161201
138 H Y Hwang, N C Brandt, H Farhat, A L Hsu, J Kong, K A Nelson. Nonlinear THz conductivity dynamics in P-type CVD-grown graphene. Journal of Physical Chemistry B, 2013, 117(49): 15819–15824
https://doi.org/10.1021/jp407548a pmid: 24102144
139 J Sá, D L A Fernandes, M V Pavliuk, J Szlachetko. Controlling dark catalysis with quasi half-cycle terahertz pulses. Catalysis Science & Technology, 2017, 7(5): 1050–1054
https://doi.org/10.1039/C6CY02651F
140 S Tani, F Blanchard, K Tanaka. Ultrafast carrier dynamics in graphene under a high electric field. Physical Review Letters, 2012, 109(16): 166603
https://doi.org/10.1103/PhysRevLett.109.166603 pmid: 23215106
141 A S Reyna, C B de Araújo. High-order optical nonlinearities in plasmonic nanocomposites—a review. Advances in Optics and Photonics, 2017, 9(4): 720–724
https://doi.org/10.1364/AOP.9.000720
142 O Reshef, E Giese, M Zahirul Alam, I De Leon, J Upham, R W Boyd. Beyond the perturbative description of the nonlinear optical response of low-index materials. Optics Letters, 2017, 42(16): 3225–3228
https://doi.org/10.1364/OL.42.003225 pmid: 28809914
143 R Zhou, Z Jin, G Li, G Ma, Z Cheng, X Wang. Terahertz magnetic field induced coherent spin precession in YFeO3. Applied Physics Letters, 2012, 100(6): 061102
https://doi.org/10.1063/1.3682082
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed