Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2021, Vol. 14 Issue (1) : 64-93    https://doi.org/10.1007/s12200-020-1081-4
REVIEW ARTICLE
Intense terahertz generation from photoconductive antennas
Elchin ISGANDAROV1, Xavier ROPAGNOL1,2, Mangaljit SINGH1, Tsuneyuki OZAKI1()
1. Institut National de la Recherche Scientifique, Centre Énergie, Matériaux Télécommunications (INRS-EMT), Varennes, Québec J3X 1S2, Canada
2. Département de Génie Électrique, École de Technologie Supérieure (ETS), Montréal, Québec H3C 1K3, Canada
 Download: PDF(6524 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, we review the past and recent works on generating intense terahertz (THz) pulses from photoconductive antennas (PCAs). We will focus on two types of large-aperture photoconductive antenna (LAPCA) that can generate high-intensity THz pulses (a) those with large-aperture dipoles and (b) those with interdigitated electrodes. We will first describe the principles of THz generation from PCAs. The critical parameters for improving the peak intensity of THz radiation from LAPCAs are summarized. We will then describe the saturation and limitation process of LAPCAs along with the advantages and disadvantages of working with wide-bandgap semiconductor substrates. Then, we will explain the evolution of LAPCA with interdigitated electrodes, which allows one to reduce the photoconductive gap size, and thus obtain higher bias fields while applying lower voltages. We will also describe recent achievements in intense THz pulses generated by interdigitated LAPCAs based on wide-bandgap semiconductors driven by amplified lasers. Finally, we will discuss the future perspectives of THz pulse generation using LAPCAs.

Keywords sub-cycle intense terahertz (THz) pulses      ultrafast Ti:sapphire lasers      wide-bandgap semiconductors      large-aperture photoconductive antenna (LAPCA)      phase mask      interdigitated large-aperture photoconductive emitters (ILAPCA)     
Corresponding Author(s): Tsuneyuki OZAKI   
Online First Date: 24 December 2020    Issue Date: 19 April 2021
 Cite this article:   
Elchin ISGANDAROV,Xavier ROPAGNOL,Mangaljit SINGH, et al. Intense terahertz generation from photoconductive antennas[J]. Front. Optoelectron., 2021, 14(1): 64-93.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-020-1081-4
https://academic.hep.com.cn/foe/EN/Y2021/V14/I1/64
Fig.1  Schematic view of a typical large-aperture photoconductive emitter [38]
Fig.2  Calibrated radiated field as a function of optical fluence from a 0.5 mm gap GaAs antenna at bias fields of 4.0, 2.0, and 1.0 kV/cm [13]
crystal EG/eV Ec/(kV·cm1) m/(cm2·V1·s1) tc/ps r/(W·cm1) K/(W·cm1·K1)
SI-GaAs 1.44 <10 9500 2–10 106–108 0.27
LT-GaAs 1.44 10 150–200 0.3–1 106 0.27
diamond 5.46 2000 2800 1011–1018 25
GaN 3.40 300 1250 >150 >108 1.3
ZnSe mono 2.67 60 300–600 >500 1012 0.18
6H-SiC 3.23 >500 200–300 1000 >1012 3.7
4H-SiC 3.02 1000 800 <1000 <1012 3.7
Tab.1  Important parameters of semiconductors used for the fabrication of PCAs [47,5461]
Fig.3  Calculated photocurrent, the amplitude of the radiated electric field and the laser pulse shape as a function of time [69]
Fig.4  THz radiation waveforms from LT-GaAs and SI-GaAs emitters with the excitation by low optical fluence single pulses. The solid lines represent the measured waveforms and the dashed lines represent the calculated waveforms. Emitter material: (a) LT-GaAs annealed at 575°C, (b) LT-GaAs annealed at 600°C, (c) LT-GaAs annealed at 625°C, and (d) SI-GaAs [67]
Fig.5  Optical micrograph of (a) failed antenna, (b) X-ray topography of the device showing considerably grain boundaries and domains as well as electro-migration of gold (arrow) in between the microstrips [82]
Fig.6  (a) Time-domain waveform produced by photoexcitation of the ZnSe THz emitter with 160 mW pump beam and a 230 Vp-p bias voltage. The edge-illuminated PC gap and THz dipole emitter are shown in the inset. (b) Measured peak-to-peak THz field amplitudes as a function of the PC gap bias voltage. The THz waveform amplitudes calculated from the photocurrent transport model are shown in the inset [94]
Fig.7  (a) Normalized waveforms THz pulses emitted by mono- and poly-crystalline ZnSe LAPCAs. (b) Corresponding power spectrums to the THz pulses radiated that is obtained by Fourier spectrum [51]
Fig.8  Fluence dependence of the peak THz electric field from ZnSe single crystal antenna illuminated at 400 and 800 nm [51]
Fig.9  Fluence dependence of peak field of THz radiation from GaAs, ZnSe single crystal, and poly-crystalline ZnSe PCA. Squares are the experimental data, and solid lines are fits to the data [51]
Fig.10  Comparison of bias field dependence of the peak THz electric field for GaAs antenna excited at 800 nm and mono-crystalline ZnSe antenna excited at 400 nm [51]
Fig.11  (a) Normalized and in inset original THz waveforms radiated by 6H- and 4H-SiC LAPCA antennas excited at 400 nm with a fluence of 0.29 mJ/cm2 and biased at 9.25 kV/cm. (b) Their respective normalized amplitude spectra [63]
Fig.12  THz peak electric field versus fluence for a 6H-SiC (a) and 4H-SiC (b) PC antenna excited at 400 nm and biased with three different bias fields. (c) is an expanded scale of the bottom left part of (b), in order to show the quadratic dependence of the field on fluence for the 4H-SiC PC antenna at low excitation fluence [63]
Fig.13  (a) THz peak electric field versus fluence for 6H-SiC PCA excited at 400 and 800 nm, and for 4H-SiC PCA excited at 400 nm and biased at 20 kV/cm. (b) THz peak electric field versus bias field for 6H-SiC PCA excited at 400 nm at 1.7 mJ/cm2 and 800 nm at 6.7 mJ/cm2, and for 4H-SiC PCA excited at 400 nm at 1.1 mJ/cm2 [63]
Fig.14  (a) Experimental configuration. (b) Scaling of the THz energy as a function of the bias field. (c) Optical fluence for 4H-SiC, 6H-SiC, GaN, β-Ga2O3 and ZnSe LAPCAs. (d) Scaling of the square root of THz energy as a function optical fluence [35]
Fig.15  (a) Schematic of THz emitter composed of seven photoconductive antenna units having interdigitated electrode structure. The units are labeled A–G for later reference. (b) Structure of electrodes and shadow mask of each unit [115]
Fig.16  (a) THz waveforms obtained from a conventional LAPCA (thick line), and micro-structured antenna array (thin line) under typical operation conditions. (b) Normalized spectrum of THz fields obtained from conventional large-aperture emitter (thick line), and micro-structured antenna array (thin line) [115]
Fig.17  Evolution of the THz pulse shape for different glass phase mask thickness (0.17, 0.34, 0.51, 0.68, and 1.00 mm thick) of an interdigitated GaAs LAPCA at a bias field of 1.2 kV/cm and a excitation fluence of 14 mJ/cm2 [38]
Fig.18  Schematic and scanning electron microscope images of a large area plasmonic photoconductive source fabricated on a SI-GaAs substrate [29]
Fig.19  (a) Cut view of an interdigitated photoconductive switch. Interdigitated gold electrodes on top of the GaAs layer consist of 4 mm wide electrodes, equally spaced by a distance D = 4 mm. (b) Top view of the intermixed geometry principle (only the first metallic layer is represented). (c) Large area implementation investigated experimentally with total area of the gold finger electrodes is 450 µm × 450 mm. (d) Orientation of the wire-grid polarizer u with respect to the interdigitated structure directions u H, u Vfor the emitted field experimental characterization [143]
Fig.20  THz pulses shapes generated from the ZnSe interdigitated LAPCA excited at 400 nm with a fluence of 0.2 mJ/cm2, at a bias field of 10 kV/cm with 0.65 and 1 mm binary mask and a shadow mask. (b) Power spectrum with a shadow mask (blue line), and the 1 mm binary mask (red line). (c) and (d) THz pulse shapes obtained with the 0.65 mm (c) and the 1 mm (d) binary mask on the ZnSe LAPCA [38]
Fig.21  THz waveform acquired by electro-optic sampling (EOS) of emission from ZnSe interdigitated LAPCA with Ti/Au contacts, using a shadow mask, excited with 16 mJ of 400 nm optical pump and biased with 30 kV/cm. (b) Respective amplitude THz spectrum [34]
Fig.22  (a) Amplitude of the transmitted THz pulses through the bare substrate (Eref) and the InGaAs sample (Etrans) with the incident peak field of 190 kV/cm. Inset: corresponding terahertz waveforms, where the blue arrow indicates the propagation direction. (b) Measured field dependence of Etrans and half-cycle duration (amplitude FWHM) as a function of the incident peak field Ein measured in air. (c) Measured transmission spectra at various incident fields. The gray area corresponds to the transmission lower than 1. (d) Calculated transmission spectra based on the described model [146]
Fig.23  Top view of a typical 6H-SiC ILAPCA. Here, the ILAPCA is composed of 38 electrodes with a gap size of 800 µm and a width and length of 1 and 55 mm respectively
Fig.24  (a) Peak electric field of the THz pulses emitted by ZnSe (purple) and 6H-SiC (red) ILAPCAs. (b) Power spectrum of 6H-SiC ILAPCA in frequency range
Fig.25  (a) Photo of the structure of two ILAPCAS on a 4 inch diameter 6H-SiC wafer and the shadow mask. (b) Microscope image of the rounding edge of the ILAPCA structure on the 4H-SiC substrate. (c) Scheme of the experimental set-up. (d) Scaling of the THz energy as a function of the bias electric field for 6H-SiC and 4H-SiC ILAPCAs. And (e) scaling of the THz energy as a function of the laser energy contrast ratio for the 6H-SiC ILAPCA biased at 12.5 kV/cm and pumped with 2.83 mJ/cm2 [35]
Fig.26  (a) Experimental scheme of the Z-scan experiment with the InGaAs sample. (b) Normalized transmission as a function of the Z-scan position for the InGaAs sample and the InP substrate, with a THz pulse energy of 11 mJ. Inset shows the simulated results of the FWHM duration of the THz pulse as a function of the THz peak electric field for a transmission enhancement of 1.7 [35]
1 M Tonouchi. Cutting-edge terahertz technology. Nature Photonics, 2007, 1: 97–105
https://doi.org/10.1038/nphoton.2007.3
2 L Consolino, S Bartalini, P De Natale. Terahertz frequency metrology for spectroscopic applications: a review. Journal of Infrared, Millimeter and Terahertz Waves, 2017, 38(11): 1289–1315
https://doi.org/10.1007/s10762-017-0406-x
3 D Nicoletti, A Cavalleri. Nonlinear light–matter interaction at terahertz frequencies. Advances in Optics and Photonics, 2016, 8(3): 401
https://doi.org/10.1364/AOP.8.000401
4 D Fausti, R I Tobey, N Dean, S Kaiser, A Dienst, M C Hoffmann, S Pyon, T Takayama, H Takagi, A Cavalleri. Light-induced superconductivity in a stripe-ordered cuprate. Science, 2011, 331(6014): 189–191
https://doi.org/10.1126/science.1197294 pmid: 21233381
5 M Först, R I Tobey, H Bromberger, S B Wilkins, V Khanna, A D Caviglia, Y D Chuang, W S Lee, W F Schlotter, J J Turner, M P Minitti, O Krupin, Z J Xu, J S Wen, G D Gu, S S Dhesi, A Cavalleri, J P Hill. Melting of charge stripes in vibrationally driven La1.875Ba0.125CuO4: assessing the respective roles of electronic and lattice order in frustrated superconductors. Physical Review Letters, 2014, 112(15): 157002
https://doi.org/10.1103/PhysRevLett.112.157002 pmid: 24785066
6 R Mankowsky, A Subedi, M Först, S O Mariager, M Chollet, H T Lemke, J S Robinson, J M Glownia, M P Minitti, A Frano, M Fechner, N A Spaldin, T Loew, B Keimer, A Georges, A Cavalleri. Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5. Nature, 2014, 516(7529): 71–73
https://doi.org/10.1038/nature13875 pmid: 25471882
7 S Kaiser, S R Clark, D Nicoletti, G Cotugno, R I Tobey, N Dean, S Lupi, H Okamoto, T Hasegawa, D Jaksch, A Cavalleri. Optical properties of a vibrationally modulated solid state Mott insulator. Scientific Reports, 2014, 4: 3823
https://doi.org/10.1038/srep03823
8 M Mitrano, A Cantaluppi, D Nicoletti, S Kaiser, A Perucchi, S Lupi, P Di Pietro, D Pontiroli, M Riccò, S R Clark, D Jaksch, A Cavalleri. Possible light-induced superconductivity in K3C60 at high temperature. Nature, 2016, 530(7591): 461–464
https://doi.org/10.1038/nature16522 pmid: 26855424
9 X C Zhang, A Shkurinov, Y Zhang. Extreme terahertz science. Nature Photonics, 2017, 11: 16–18
https://doi.org/0.1038/nphoton.2016.249
10 R Matsunaga, N Tsuji, H Fujita, A Sugioka, K Makise, Y Uzawa, H Terai, Z Wang, H Aoki, R Shimano. Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor. Science, 2014, 345(6201): 1145–1149
https://doi.org/10.1126/science.1254697 pmid: 25011555
11 R Matsunaga, Y I Hamada, K Makise, Y Uzawa, H Terai, Z Wang, R Shimano. Higgs amplitude mode in the BCS superconductors Nb1−xTixN induced by terahertz pulse excitation. Physical Review Letters, 2013, 111(5): 057002
https://doi.org/10.1103/PhysRevLett.111.057002 pmid: 23952432
12 S Rajasekaran, E Casandruc, Y Laplace, D Nicoletti, G D Gu, S R Clark, D Jaksch, A Cavalleri. Parametric amplification of a superconducting plasma wave. Nature Physics, 2016, 12(11): 1012–1016
https://doi.org/10.1038/nphys3819 pmid: 27833647
13 D H Auston, K P Cheung, P R Smith. Picosecond photoconducting Hertzian dipoles. Applied Physics Letters, 1984, 45(3): 284–286
https://doi.org/10.1063/1.95174
14 J T Darrow, X C Zhang, D H Auston, J D Morse. Saturation properties of large-aperture photoconducting antennas. IEEE Journal of Quantum Electronics, 1992, 28(6): 1607–1616
https://doi.org/10.1109/3.135314
15 M R Stone, M Naftaly, R E Miles, J R Fletcher, D P Steenson. Electrical and radiation characteristics of semilarge photoconductive terahertz emitters. IEEE Transactions on Microwave Theory and Techniques, 2004, 52(10): 2420–2429
https://doi.org/10.1109/TMTT.2004.835980
16 M Reid, R Fedosejevs. Quantitative comparison of terahertz emission from (100) InAs surfaces and a GaAs large-aperture photoconductive switch at high fluences. Applied Optics, 2005, 44(1): 149–153
https://doi.org/10.1364/AO.44.000149 pmid: 15662896
17 D Grischkowsky, S Keiding, M van Exter, C Fattinger. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. Journal of the Optical Society of America B, Optical Physics, 1990, 7(10): 2006
https://doi.org/10.1364/JOSAB.7.002006
18 H A Hafez, X Chai, A Ibrahim, S Mondal, D Férachou, X Ropagnol, T Ozaki. Intense terahertz radiation and their applications. Journal of Optics, 2016, 18(9): 093004
https://doi.org/10.1088/2040-8978/18/9/093004
19 R Ulbricht, E Hendry, J Shan, T F Heinz, M Bonn. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Reviews of Modern Physics, 2011, 83(2): 543–586
https://doi.org/10.1103/RevModPhys.83.543
20 V Pačebutas, A Bičiūnas, S Balakauskas, A Krotkus, G Andriukaitis, D Lorenc, A Pugžlys, A Baltuška. Terahertz time-domain-spectroscopy system based on femtosecond Yb:fiber laser and GaBiAs photoconducting component. Applied Physics Letters, 2010, 97(3): 031111
https://doi.org/10.1063/1.3458826
21 R Rungsawang, K Ohta, Tukamoto K, Hattori T. Ring formation of focused half-cycle terahertz pulses. Journal of Physics D, Applied Physics, 2003, 36(3): 229
https://doi.org/10.1088/0022-3727/36/3/303
22 L Razzari, F H Su, G Sharma, F Blanchard, A Ayesheshim, H C Bandulet, R Morandotti, J C Kieffer, T Ozaki, M Reid, F A Hegmann. Nonlinear ultrafast modulation of the optical absorption of intense few-cycle terahertz pulses in n-doped semiconductors. Physical Review B: Condensed Matter and Materials Physics, 2009, 79(19): 193204
https://doi.org/10.1103/PhysRevB.79.193204
23 B B Hu, M C Nuss. Imaging with terahertz waves. Optics Letters, 1995, 20(16): 1716
https://doi.org/10.1364/OL.20.001716 pmid: 19862134
24 D M Mittleman, M Gupta, R Neelamani, R G Baraniuk, J V Rudd, M Koch. Recent advances in terahertz imaging. Applied Physics B, Lasers and Optics, 1999, 68(6): 1085–1094
https://doi.org/10.1007/s003400050750
25 Z Jiang, X C Zhang. Single-shot spatiotemporal terahertz field imaging. Optics Letters, 1998, 23(14): 1114–1116
https://doi.org/10.1364/OL.23.001114 pmid: 18087445
26 J O’Hara, D Grischkowsky. Quasi-optic terahertz imaging. Optics Letters, 2001, 26(23): 1918–1920
https://doi.org/10.1364/OL.26.001918 pmid: 18059737
27 J A Zeitler, L F Gladden. In-vitro tomography and non-destructive imaging at depth of pharmaceutical solid dosage forms. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 71(1): 2–22
https://doi.org/10.1016/j.ejpb.2008.08.012
28 P U Jepsen, D G Cooke, M Koch. Terahertz spectroscopy and imaging-modern techniques and applications. Laser & Photonics Reviews, 2011, 5(1): 124–166
https://doi.org/10.1002/lpor.201000011
29 S H Yang, M R Hashemi, C W Berry, M Jarrahi. 7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes. IEEE Transactions on Terahertz Science and Technology, 2014, 4(5): 575–581
https://doi.org/10.1109/TTHZ.2014.2342505
30 N T Yardimci, H Lu, M Jarrahi. High power telecommunication-compatible photoconductive terahertz emitters based on plasmonic nano-antenna arrays. Applied Physics Letters, 2016, 109(19): 191103
https://doi.org/10.1063/1.4967440 pmid: 27916999
31 N T Yardimci, S Cakmakyapan, S Hemmati, M Jarrahi. Significant efficiency enhancement in photoconductive terahertz emitters through three-dimensional light confinement. In: Proceedings of IEEE MTT-S International Microwave Symposium. Honololu: IEEE, 2017, 435–438
32 N T Yardimci, S Cakmakyapan, S Hemmati, M Jarrahi. A high-power broadband terahertz source enabled by three-dimensional light confinement in a plasmonic nanocavity. Scientific Reports, 2017, 7(1): 4166
https://doi.org/10.1038/s41598-017-04553-4 pmid: 28646225
33 R R Jones, D You, P H Bucksbaum. Ionization of Rydberg atoms by subpicosecond half-cycle electromagnetic pulses. Physical Review Letters, 1993, 70(9): 1236–1239
https://doi.org/10.1103/PhysRevLett.70.1236 pmid: 10054325
34 X Ropagnol, M Khorasaninejad, M Raeiszadeh, S Safavi-Naeini, M Bouvier, C Y Côté , A Laramée, M Reid, M A Gauthier, T Ozaki. Intense THz pulses with large ponderomotive potential generated from large aperture photoconductive antennas. Optics Express, 2016, 24(11): 11299–11311
https://doi.org/10.1364/OE.24.011299 pmid: 27410061
35 X Ropagnol, Z Kovács, B Gilicze, M Zhuldybina, F Blanchard, C M Garcia-Rosas, S Szatmári, I B Földes, T Ozaki. Intense sub-terahertz radiation from wide-bandgap semiconductor based large-aperture photoconductive antennas pumped by UV lasers. New Journal of Physics, 2019, 21(11): 113042
https://doi.org/10.1088/1367-2630/ab532e
36 J A Fülöp, S Tzortzakis, T Kampfrath. Laser-driven strong-field terahertz sources. Advanced Optical Materials, 2020, 8(3): 1900681
https://doi.org/10.1002/adom.201900681
37 T Kampfrath, K Tanaka, K A Nelson. Resonant and nonresonant control over matter and light by intense terahertz transients. Nature Photonics, 2013, 7: 680–690
https://doi.org/10.1038/nphoton.2013.184
38 X Ropagnol, R Morandotti, T Ozaki, M Reid. THz pulse shaping and improved optical-to-THz conversion efficiency using a binary phase mask. Optics Letters, 2011, 36(14): 2662–2664
https://doi.org/10.1364/OL.36.002662 pmid: 21765501
39 D You, D R Dykaar, R R Jones, P H Bucksbaum. Generation of high-power sub-single-cycle 500-fs electromagnetic pulses. Optics Letters, 1993, 18(4): 290
https://doi.org/10.1364/OL.18.000290 pmid: 19802113
40 E R Brown, F W Smith, K A McIntosh. Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors. Journal of Applied Physics, 1993, 73(3): 1480–1484
https://doi.org/10.1063/1.353222
41 R Emadi, N Barani, R Safian, A Z Nezhad. Hybrid computational simulation and study of terahertz pulsed photoconductive antennas. Journal of Infrared, Millimeter and Terahertz Waves, 2016, 37(11): 1069–1085
https://doi.org/10.1007/s10762-016-0299-0
42 D S Kim, D S Citrin. Coulomb and radiation screening in photoconductive terahertz sources. Applied Physics Letters, 2006, 88(16): 161117
https://doi.org/10.1063/1.2196480
43 H F Tiedje, D Saeedkia, M Nagel, H K Haugen. Optical scanning techniques for characterization of terahertz photoconductive antenna arrays. In: Proceedings of the 33rd International Conference on Infrared and Millimeter Waves and the 16th International Conference on Terahertz Electronics. Pasadena: IEEE, 2008, 1–2
44 L Hou, W Shi. An LT-GaAs terahertz photoconductive antenna with high emission power, low noise, and good stability. IEEE Transactions on Electron Devices, 2013, 60(5): 1619–1624
https://doi.org/10.1109/TED.2013.2253467
45 Y Huang, N Khiabani, Y Shen, D Li. Terahertz photoconductive antenna efficiency. In: Proceedings of 2011 International Workshop on Antenna Technology (iWAT). Hong Kong: IEEE, 2011, 152–156
46 N M Burford, M O El-Shenawee. Review of terahertz photoconductive antenna technology. Optical Engineering (Redondo Beach, Calif.), 2017, 56(1): 010901
https://doi.org/10.1117/1.OE.56.1.010901
47 M Tani, S Matsuura, K Sakai, S Nakashima. Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs. Applied Optics, 1997, 36(30): 7853–7859
https://doi.org/10.1364/AO.36.007853 pmid: 18264312
48 M Tani, K Yamamoto, E S Estacio, C T Que, H Nakajima, M Hibi, F Miyamaru, S Nishizawa, M Hangyo. Photoconductive emission and detection of terahertz pulsed radiation using semiconductors and semiconductor devices. Journal of Infrared, Millimeter and Terahertz Waves, 2012, 33(4): 393–404
https://doi.org/10.1007/s10762-012-9882-1
49 W Shi, L Hou, X Wang. High effective terahertz radiation from semi-insulating-GaAs photoconductive antennas with ohmic contact electrodes. Journal of Applied Physics, 2011, 110(2): 023111
https://doi.org/10.1063/1.3611397
50 P K Benicewicz, A J Taylor. Scaling of terahertz radiation from large-aperture biased InP photoconductors. Optics Letters, 1993, 18(16): 1332
https://doi.org/10.1364/OL.18.001332 pmid: 19823373
51 X Ropagnol, R Morandotti, T Ozaki, M Reid. Toward high-power terahertz emitters using large aperture ZnSe photoconductive antennas. IEEE Photonics Journal, 2011, 3(2): 174–186
https://doi.org/10.1109/JPHOT.2011.2116112
52 J Prajapati, M Bharadwaj, A Chatterjee, R Bhattacharjee. Magnetic field-assisted radiation enhancement from a large aperture photoconductive antenna. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(2): 678–687
53 X. Ropagnol Développement d’une source de radiation terahertz (THz) intense et mise en forme d’impulsions THz àpartir d’une antenne de grande ouverture de ZnSe. 2013
54 X Wang, W Shi, L Hou, D Ma, G Qu. Investigation of semi-insulating gallium arsenide photoconductive photodetectors. In: Proceedings of 2008 International Conference on Optical Instruments and Technology: Advanced Sensor Technologies and Applications. Beijing: SPIE, 2008, 71570B
55 H Yoneda, K Tokuyama, K Ueda, H Yamamoto, K Baba. High-power terahertz radiation emitter with a diamond photoconductive switch array. Applied Optics, 2001, 40(36): 6733–6736
https://doi.org/10.1364/AO.40.006733 pmid: 18364984
56 P Meng, X Zhao, X Yang, J Wu, Q Xie, J He, J Hu, J He. Breakdown phenomenon of ZnO varistors caused by non-uniform distribution of internal pores. Journal of the European Ceramic Society, 2019, 39(15): 4824–4830
https://doi.org/10.1016/j.jeurceramsoc.2019.06.043
57 B P Singh, O Imafuji, Y Hirose, Y Fukushima, S Takigawa, D Ueda. High power C-doped GaN photoconductive THz emitter. In: Proceedings of Joint 32nd International Conference on Infrared and Millimetre Waves, and 15th International Conference on Terahertz Electronics. Cardiff: IEEE, 2007, 1004–1005
58 X Ropagnol, R Morandotti, T Ozaki, M Reid. Towards high-power terahertz emitters using large aperture ZnSe photoconductive antennas. In: Proceedings of Laser Science to Photonic Applications. San Jose: IEEE, 2010, 1–2
59 S Doğan A , Teke D , Huang, H Morkoç, C B Roberts, J Parish, B Ganguly, M Smith, R E Myers, S E Saddow. 4H-SiC photoconductive switching devices for use in high-power applications. Applied Physics Letters, 2003, 82(18): 3107–3109
https://doi.org/10.1063/1.1571667
60 P Friedrichs, E P Burte, R Schörner. Dielectric strength of thermal oxides on 6H-SiC and 4H-SiC. Applied Physics Letters, 1994, 65(13): 1665–1667
https://doi.org/10.1063/1.112904
61 O Imafuji, B P Singh, Y Hirose, Y Fukushima, S Takigawa. High power subterahertz electromagnetic wave radiation from GaN photoconductive switch. Applied Physics Letters, 2007, 91(7): 071112
https://doi.org/10.1063/1.2771528
62 L M Wang. Relationship between intrinsic breakdown field and bandgap of materials. In: Proceedings of the 25th International Conference on Microelectronics. Belgrade: IEEE, 2006, 615–618
63 X Ropagnol, M Bouvier, M Reid, T Ozaki. Improvement in thermal barriers to intense terahertz generation from photoconductive antennas. Journal of Applied Physics, 2014, 116(4): 043107
https://doi.org/10.1063/1.4891451
64 L Hou, W Shi, S Chen. Noise analysis and optimization of terahertz photoconductive emitters. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(1): 8401305
65 E Moreno, M F Pantoja, F G Ruiz, J B Roldán, S G García. On the numerical modeling of terahertz photoconductive antennas. Journal of Infrared, Millimeter and Terahertz Waves, 2014, 35(5): 432–444
https://doi.org/10.1007/s10762-014-0060-5
66 E Castro-Camus, L Fu, J Lloyd-Hughes, H H Tan, C Jagadish, M B Johnston. Photoconductive response correction for detectors of terahertz radiation. Journal of Applied Physics, 2008, 104(5): 053113
https://doi.org/10.1063/1.2969035
67 S G Park, A M Weiner, M R Melloch, C W Siders, J L W Siders, A J Taylor. High-power narrow-band terahertz generation using large-aperture photoconductors. IEEE Journal of Quantum Electronics, 1999, 35(8): 1257–1268
https://doi.org/10.1109/3.777228
68 P K Benicewicz, J P Roberts, A J Taylor. Scaling of terahertz radiation from large-aperture biased photoconductors. Journal of the Optical Society of America B, Optical Physics, 1994, 11(12): 2533
https://doi.org/10.1364/JOSAB.11.002533
69 L Duvillaret, F Garet, J F Roux, J L Coutaz. Analytical modeling and optimization of terahertz time-domain spectroscopy experiments using photoswitches as antennas. IEEE Journal of Selected Topics in Quantum Electronics, 2001, 7(4): 615–623
https://doi.org/10.1109/2944.974233
70 E Castro-Camus, J Lloyd-Hughes, M B Johnston. Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches. Physical Review B: Condensed Matter and Materials Physics, 2005, 71(19): 195301
https://doi.org/10.1103/PhysRevB.71.195301
71 J Prajapati, M Bharadwaj, A Chatterjee, R Bhattacharjee. Radiation field analysis of a photoconductive antenna using an improved carrier dynamics. Semiconductor Science and Technology, 2019, 34(2): 024004
https://doi.org/10.1088/1361-6641/aae4c9
72 Z Piao, M Tani, K Sakai. Carrier dynamics and terahertz radiation in photoconductive antennas. Japanese Journal of Applied Physics, 2000, 39(1): 96–100
https://doi.org/10.1143/JJAP.39.96
73 S Winnerl, F Peter, S Nitsche, A Dreyhaupt, B Zimmermann, M Wagner, H Schneider, M Helm, K Köhler. Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(2): 449–457
https://doi.org/10.1109/JSTQE.2007.910104
74 W Shi, X F Sun, J Zeng, W L Jia. Carrier dynamics and terahertz radiation in large-aperture photoconductive antenna. In: Proceedings of International Symposium on Photoelectronic Detection and Imaging 2007: Laser, Ultraviolet, and Terahertz Technology. Beijing: SPIE, 2008, 662228
75 D Liu, J Qin. Carrier dynamics of terahertz emission from low-temperature-grown GaAs. Applied Optics, 2003, 42(18): 3678–3683
https://doi.org/10.1364/AO.42.003678 pmid: 12833974
76 Z Piao, M Tani, K Sakai. Carrier dynamics and THz radiation in biased semiconductor structures. In: Proceedings of SPIE 3617, Terahertz Spectroscopy and Applications. San Jose: SPIE, 1999, 49–56
77 L Chen, W Fan. Numerical simulation of terahertz generation and detection based on ultrafast photoconductive antennas. In: Proceedings of International Symposium on Photoelectronic Detection and Imaging 2011: Terahertz Wave Technologies and Applications. Beijing: SPIE, 2011, 81950K
78 G Šlekas, Ž Kancleris, A Urbanowicz, R Čiegis. Comparison of full-wave models of terahertz photoconductive antenna based on ordinary differential equation and Monte Carlo method. European Physical Journal Plus, 2020, 135(1): 85
https://doi.org/10.1140/epjp/s13360-019-00094-z
79 B Cadilhon, B Cassany, P Modin, J C Diot, V Bertrand, L Pecastaing. Ultra Wideband Antennas for High Pulsed Power Applications. In: Matin M, ed. Ultra Wideband Communications: Novel Trends–Antennas and Propagation. Rijeka: InTech, 2011
80 S Mahadevan, S M Hardas, G Suryan. Electrical breakdown in semiconductors. Physica Status Solidi (a), 1971, 8(2): 335–374
https://doi.org/10.1002/pssa.2210080202
81 M Xu, M Li, W Shi, C Ma, Q Zhang, L Fan, X Shang, P Xue. Temperature-dependence of high-gain operation in GaAs photoconductive semiconductor switch at 1.6 mJ excitation. IEEE Electron Device Letters, 2016, 37(1): 67–69
https://doi.org/10.1109/LED.2015.2503298
82 S B Qadri, D H Wu, B D Graber, N A Mahadik, A Garzarella. Failure mechanism of THz GaAs photoconductive antenna. Applied Physics Letters, 2012, 101(1): 011910
https://doi.org/10.1063/1.4733476
83 C Sun, A Zhang. Efficient terahertz generation from lightly ion-beam-treated semi-insulating GaAs photoconductive antennas. Applied Physics Express, 2017, 10(10): 102202
https://doi.org/10.7567/APEX.10.102202
84 S Gupta, M Y Frankel, J A Valdmanis, J F Whitaker, G A Mourou, F W Smith, A R Calawa. Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures. Applied Physics Letters, 1991, 59(25): 3276–3278
https://doi.org/10.1063/1.105729
85 T A Liu, M Tani, M Nakajima, M Hangyo, C L Pan. Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs. Applied Physics Letters, 2003, 83(7): 1322–1324
https://doi.org/10.1063/1.1604191
86 B Salem, D Morris, V Aimez, J Beerens, J Beauvais, D Houde. Pulsed photoconductive antenna terahertz sources made on ion-implanted GaAs substrates. Journal of Physics Condensed Matter, 2005, 17(46): 7327
87 B Salem, D Morris, Y Salissou, V Aimez, S Charlebois, M Chicoine, F Schiettekatte. Terahertz emission properties of arsenic and oxygen ion-implanted GaAs based photoconductive pulsed sources. Journal of Vacuum Science & Technology A, Vacuum, Surfaces, and Films, 2006, 24(3): 774–777
https://doi.org/10.1116/1.2183284
88 S Ono, H Murakami, A Quema, G Diwa, N Sarukura, R Nagasaka, Y Ichikawa, H Ogino, E Ohshima, A Yoshikawa, T Fukuda. Generation of terahertz radiation using zinc oxide as photoconductive material excited by ultraviolet pulses. Applied Physics Letters, 2005, 87(26): 261112
https://doi.org/10.1063/1.2158514
89 M Beck, H Schäfer, G Klatt, J Demsar, S Winnerl, M Helm, T Dekorsy. Impulsive terahertz radiation with high electric fields from an amplifier-driven large-area photoconductive antenna. Optics Express, 2010, 18(9): 9251–9257
https://doi.org/10.1364/OE.18.009251 pmid: 20588772
90 E M Gavrushchuk. Polycrystalline zinc selenide for IR optical applications. Inorganic Materials, 2003, 39(9): 883–899
https://doi.org/10.1023/A:1025529017192
91 P S Cho, F Peng, P T Ho, J Goldhar, C H Lee. ZnSe photoconductive switches with transparent electrodes. In: Proceedings of the 8th IEEE International Conference on Pulsed Power. San Diego: IEEE, 2005, 209–212
92 P T Ho, F Peng, J Goldhar. Photoconductive switching using polycrystalline ZnSe. IEEE Transactions on Electron Devices, 1990, 37(12): 2517–2519
https://doi.org/10.1109/16.64527
93 P S Cho, J Goldhar, C H Lee, S E Saddow, P Neudeck. Photoconductive and photovoltaic response of high-dark-resistivity 6H-SiC devices. Journal of Applied Physics, 1995, 77(4): 1591–1599
https://doi.org/10.1063/1.358912
94 J F Holzman, A Y Elezzabi. Two-photon photoconductive terahertz generation in ZnSe. Applied Physics Letters, 2003, 83(14): 2967–2969
https://doi.org/10.1063/1.1616206
95 D Mauch, W Sullivan, A Bullick, A Neuber, J Dickens. High power lateral silicon carbide photoconductive semiconductor switches and investigation of degradation mechanisms. IEEE Transactions on Plasma Science, 2015, 43(6): 2021–2031
https://doi.org/10.1109/TPS.2015.2424154
96 H Shimizu, N Watanabe, T Morikawa, A Shima, N Iwamuro. 1.2 kV silicon carbide Schottky barrier diode embedded MOSFETs with extension structure and titanium-based single contact. Japanese Journal of Applied Physics, 2020, 59(2): 026502
https://doi.org/10.7567/1347-4065/ab65a5
97 T Kimoto, Y Yonezawa. Current status and perspectives of ultrahigh-voltage SiC power devices. Materials Science in Semiconductor Processing, 2018, 78: 43–56
98 A Bhalla. Status of SiC Products and Technology. In: Sharma Y, ed. Disruptive Wide Bandgap Semiconductors, Related Technologies, and Their Applications. London: InTech, 2018
99 L Xiao, X Yang, P Duan, H Xu, X Chen, X Hu, Y Peng, X Xu. Effect of electron avalanche breakdown on a high-purity semi-insulating 4H-SiC photoconductive semiconductor switch under intrinsic absorption. Applied Optics, 2018, 57(11): 2804–2808
https://doi.org/10.1364/AO.57.002804 pmid: 29714282
100 D Yu, J Kang, J Berakdar, C Jia. Nondestructive ultrafast steering of a magnetic vortex by terahertz pulses. NPG Asia Materials, 2020, 12(1): 36
https://doi.org/10.1038/s41427-020-0217-8
101 D Elliott. Ultraviolet Laser Technology and Applications. New York: Academic Press, 2014
102 F Duarte. Tunable Lasers Handbook. New York: Academic Press,1996
103 S Szatmári, B Rácz, F P Schäffer. Bandwidth limited amplification of 220 fs pulses in XeCl. Optics Communications, 1987, 62(4): 271–276
https://doi.org/10.1016/0030-4018(87)90171-4
104 B Dick, S Szatmári, B Rácz, F P Schäfer. Bandwidth limited amplification of 220 fs pulses in XeCl: theoretical and experimental study of temporal and spectral behavior. Optics Communications, 1987, 62(4): 277–283
https://doi.org/10.1016/0030-4018(87)90172-6
105 S Szatmári, F P Schäfer, E Müller-Horsche, W Müchenheim. Hybrid dye-excimer laser system for the generation of 80 fs, 900 GW pulses at 248 nm. Optics Communications, 1987, 63(5): 305–309
https://doi.org/10.1016/0030-4018(87)90181-7
106 G Di, A Bhattacharya, S Samad, B Nayak, A P Shah, A A Rahman, A Bhattacharya, S S Prabhu. Towards bandwidth-enhanced GaN-based terahertz photoconductive antennas. In: Proceedings of the 44th International Conference on Infrared, Millimeter, and Terahertz Waves. Paris: IEEE, 2019, 1–2
107 S Szatmári. High-brightness ultraviolet excimer lasers. Applied Physics B: Laser and Optics, 1994, 58(3): 211–223
108 G C Loata, M D Thomson, T Löffler, H G Roskos. Radiation field screening in photoconductive antennae studied via pulsed terahertz emission spectroscopy. Applied Physics Letters, 2007, 91(23): 232506
https://doi.org/10.1063/1.2823590
109 E Budiarto, J Margolies, S Jeong, J Son, J Bokor. High-intensity terahertz pulses at 1-kHz repetition rate. IEEE Journal of Quantum Electronics, 1996, 32(10): 1839–1846
https://doi.org/10.1109/3.538792
110 G H Welsh, D A Turton, D R Jones, D A Jaroszynski, K Wynne. 200 ns pulse high-voltage supply for terahertz field emission. Review of Scientific Instruments, 2007, 78(4): 043103
https://doi.org/10.1063/1.2724769 pmid: 17477645
111 S Winnerl, B Zimmermann, F Peter, H Schneider, M Helm. Terahertz Bessel-Gauss beams of radial and azimuthal polarization from microstructured photoconductive antennas. Optics Express, 2009, 17(3): 1571–1576
https://doi.org/10.1364/OE.17.001571 pmid: 19188986
112 M J Cliffe, A Rodak, D M Graham, S P Jamison. Generation of longitudinally polarized terahertz pulses with field amplitudes exceeding 2 kV/cm. Applied Physics Letters, 2014, 105(19): 191112
https://doi.org/10.1063/1.4901904
113 ., G A Mourou, D M Bloom, C H Lee. Picosecond electronics and optoelectronics. In: Proceedings of the Topical Meeting Lake Tahoe. Nevada: SPIE, 1985, 438
114 C H Cox III, V Diadiuk, I Yao, F J Leonberger, R C Williamson. InP optoelectronic switches and their high-speed signal-processiny applications. In: Proceedings of Picosecond Optoelectronics. San Diego: SPIE, 1983, 164–168
115 T Hattori, K Egawa, S I Ookuma, T Itatani. Intense terahertz pulses from large-aperture antenna with interdigitated electrodes. Japanese Journal of Applied Physics, 2006, 45(15): L422–L424
https://doi.org/10.1143/JJAP.45.L422
116 S Y Chou, Y Liu, P B Fischer. Tera-hertz GaAs metal-semiconductor-metal photodetectors with 25 nm finger spacing and finger width. Applied Physics Letters, 1992, 61(4): 477–479
https://doi.org/10.1063/1.107862
117 M Awad, M Nagel, H Kurz, J Herfort, K Ploog. Characterization of low temperature GaAs antenna array terahertz emitters. Applied Physics Letters, 2007, 91(18): 181124
https://doi.org/10.1063/1.2800885
118 G Acuna, F Buersgens, C Lang, M Handloser, A Guggenmos, R Kersting. Interdigitated terahertz emitters. Electronics Letters, 2008, 44(3): 229–231
119 X Ropagnol, F Blanchard, T Ozaki, M Reid. Intense terahertz generation at low frequencies using an interdigitated ZnSe large aperture photoconductive antenna. Applied Physics Letters, 2013, 103(16): 161108
https://doi.org/10.1063/1.4825165
120 A Dreyhaupt, S Winnerl, T Dekorsy, M Helm. High-intensity terahertz radiation from a microstructured large-area photoconductor. Applied Physics Letters, 2005, 86(12): 121114
https://doi.org/10.1063/1.1891304
121 D B Go, D A Pohlman. A mathematical model of the modified Paschen’s curve for breakdown in microscale gaps. Journal of Applied Physics, 2010, 107(10): 103303
https://doi.org/10.1063/1.3380855
122 C Headley, L Fu, S Member, P Parkinson, X Xu, J Lloyd-Hughes, C Jagadish, M B Johnston. Improved performance of GaAs-based terahertz emitters via surface passivation and silicon nitride encapsulation. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(1): 17–21
123 A Gupta, G Rana, A Bhattacharya, A Singh, R Jain, R D Bapat, S P Duttagupta, S S Prabhu. Enhanced optical-to-THz conversion efficiency of photoconductive antenna using dielectric nano-layer encapsulation. APL Photonics, 2018, 3(5): 051706
https://doi.org/10.1063/1.5021023
124 P Kirawanich, S J Yakura, N E Islam. Study of high-power wideband terahertz-pulse generation using integrated high-speed photoconductive semiconductor switches. IEEE Transactions on Plasma Science, 2009, 37(1): 219–228
https://doi.org/10.1109/TPS.2008.2006978
125 A Singh, M Welsch, S Winnerl, M Helm, H Schneider. Improved electrode design for interdigitated large-area photoconductive terahertz emitters. Optics Express, 2019, 27(9): 13108–13115
https://doi.org/10.1364/OE.27.013108 pmid: 31052840
126 X Ropagnol, X Chai, S M Raeis-Zadeh, S Safavi-Naeini, M Kirouac-Turmel, M Bouvier, C Y Cote, M Reid, M A Gauthier, T Ozaki. Influence of gap size on intense THz generation from ZnSe interdigitated large aperture photoconductive antennas. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(4): 1–8
https://doi.org/10.1109/JSTQE.2017.2662658
127 C W Berry, M Jarrahi. Principles of impedance matching in photoconductive antennas. Journal of Infrared, Millimeter and Terahertz Waves, 2012, 33(12): 1182–1189
https://doi.org/10.1007/s10762-012-9937-3
128 R Emadi, R Safian, A Z Nezhad. Theoretical modeling of terahertz pulsed photoconductive antennas based on hot-carriers effect. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(4): 1–9
https://doi.org/10.1109/JSTQE.2016.2616448
129 E R Brown, K A McIntosh, F W Smith, K B Nichols, M J Manfra, C L Dennis, J P Mattia. Milliwatt output levels and superquadratic bias dependence in a low-temperature-grown GaAs photomixer. Applied Physics Letters, 1994, 64(24): 3311–3313
https://doi.org/10.1063/1.111289
130 X Ropagnol, F Blanchard, T Ozaki, M Reid. Intense terahertz generation at low frequencies using an interdigitated ZnSe large aperture photoconductive antenna. Applied Physics Letters, 2013, 103(16): 161108
https://doi.org/10.1063/1.4825165
131 D R Bacon, T B Gill, M Rosamond, A D Burnett, A Dunn, L Li, E H Linfield, A G Davies, P Dean, J R Freeman. Photoconductive arrays on insulating substrates for high-field terahertz generation. Optics Express, 2020, 28(12): 17219–17231
https://doi.org/10.1364/OE.391656 pmid: 32679934
132 A Dreyhaupt, F Peter, S Winnerl, S Nitsche, M Wagner, H Schneider, M Helm, K Köhler. Leistungsstarke emitter und einfach handhabbare detektoren für die terahertz-time-domain-spektroskopie. Technisches Messen., 2008, 75(1): 3–13
https://doi.org/10.1524/teme.2008.0842
133 S Winnerl. Scalable microstructured photoconductive terahertz emitters. Journal of Infrared, Millimeter and Terahertz Waves, 2012, 33(4): 431–454
https://doi.org/10.1007/s10762-011-9861-y
134 G Matthäus, S Nolte, R Hohmuth, M Voitsch, W Richter, B Pradarutti, S Riehemann, G Notni, A Tünnermann. Large-area microlens emitters for powerful THz emission. Applied Physics B, Lasers and Optics, 2009, 96(2–3): 233–235
https://doi.org/10.1007/s00340-009-3609-6
135 A Singh, S S Prabhu. Microlensless interdigitated photoconductive terahertz emitters. Optics Express, 2015, 23(2): 1529–1535
https://doi.org/10.1364/OE.23.001529 pmid: 25835910
136 D R Bacon, T B Gill, M Rosamond, A D Burnett, A Dunn, L Li, E H Linfield, A G Davies, P Dean, J R Freeman. Photoconductive arrays on insulating substrates for high-field terahertz generation. Optics Express, 2020, 28(12): 17219–17231
https://doi.org/10.1364/OE.391656 pmid: 32679934
137 A Singh, S Winnerl, J C König-Otto, D R Stephan, M Helm, H Schneider. Plasmonic efficiency enhancement at the anode of strip line photoconductive terahertz emitters. Optics Express, 2016, 24(20): 22628–22634
https://doi.org/10.1364/OE.24.022628 pmid: 27828333
138 X C Zhang. Generation and detection of terahertz electromagnetic pulses from semiconductors with femtosecond optics. Journal of Luminescence, 1995, 66–67(1–6): 488–492
https://doi.org/10.1016/0022-2313(95)00196-4
139 S Preu, G H Dhler, S Malzer, L J Wang, A C Gossard. Tunable, continuous-wave terahertz photomixer sources and applications. Journal of Applied Physics, 2011, 109(6): 061301
140 P J Hale, J Madeo, C Chin, S S Dhillon, J Mangeney, J Tignon, K M Dani. 20 THz broadband generation using semi-insulating GaAs interdigitated photoconductive antennas. Optics Express, 2014, 22(21): 26358–26364
https://doi.org/10.1364/OE.22.026358 pmid: 25401668
141 J Madéo, N Jukam, D Oustinov, M Rosticher, R Rungsawang, J Tignon, S S Dhillon. Frequency tunable terahertz interdigitated photoconductive antennas. Electronics Letters, 2010, 46(9): 611–613
https://doi.org/10.1049/el.2010.0440
142 N T Yardimci, S H Yang, C W Berry, M Jarrahi. High-power terahertz generation using large-area plasmonic photoconductive emitters. IEEE Transactions on Terahertz Science and Technology, 2015, 5(2): 223–229
https://doi.org/10.1109/TTHZ.2015.2395417
143 K Maussang, J Palomo, J Mangeney, S S Dhillon, J Tignon. Large-area photoconductive switches as emitters of terahertz pulses with fully electrically controlled linear polarization. Optics Express, 2019, 27(10): 14784–14797
https://doi.org/10.1364/OE.27.014784 pmid: 31163921
144 L A Sterczewski, M P Grzelczak, E F Plinski. Terahertz antenna electronic chopper. Review of Scientific Instruments, 2016, 87(1): 014702
https://doi.org/10.1063/1.4939461 pmid: 26827336
145 H Hirori, A Doi, F Blanchard, K Tanaka. Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3. Applied Physics Letters, 2011, 98(9): 091106
https://doi.org/10.1063/1.3560062
146 X Chai, X Ropagnol, S M Raeis-Zadeh, M Reid, S Safavi-Naeini, T Ozaki. Subcycle terahertz nonlinear optics. Physical Review Letters, 2018, 121(14): 143901
https://doi.org/10.1103/PhysRevLett.121.143901 pmid: 30339430
147 E Moreno, M F Pantoja, F G Ruiz, J B Roldán, S G García. On the numerical modeling of terahertz photoconductive antennas. Journal of Infrared, Millimeter and Terahertz Waves, 2014, 35(5): 432–444
https://doi.org/10.1007/s10762-014-0060-5
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed