Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2021, Vol. 14 Issue (4) : 499-506    https://doi.org/10.1007/s12200-020-1103-2
RESEARCH ARTICLE
Light-emission organic solar cells with MoO3:Al interfacial layer–preparation and characterizations
Xinran LI1, Yanhui LOU1(), Zhaokui WANG2()
1. College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
2. Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
 Download: PDF(2560 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A light-emitting organic solar cell (LE-OSC) with electroluminescence (EL) and photovoltaic (PV) properties is successfully fabricated by connecting the EL and PV units using a MoO3:Al co-evaporation interfacial layer, which has suitable work function and good transmittance. PV and EL units are fabricated based on poly(3-hexylthiophene) (P3HT)-indene-C60 bisadduct (IC60BA) blends, and 4,4′-bis (N-carbazolyl) biphenyl-fac-tris (2-phenylpyridine) iridium (Ir(ppy)3), respectively. The work function and the transmittance of the MoO3:Al co-evaporation are measured and adjusted by the ultraviolet photoelectron spectroscopy and the optical spectrophotometer to obtain the better bi-functional device performance. The forward- and reverse-biased current density-voltage characteristics in dark and under illumination are evaluated to better understand the operational mechanism of the LE-OSCs. A maximum luminance of 1550 cd/m2 under forward bias and a power conversion efficiency of 0.24% under illumination (100 mW/cm2) are achieved in optimized LE-OSCs. The proposed device structure is expected to provide valuable information in the film conditions for understanding the polymer blends internal conditions and meliorating the film qualities.

Keywords organic solar cell (OSC)      polymer-fullerene      light emission      MoO3:Al interfacial layer     
Corresponding Author(s): Yanhui LOU,Zhaokui WANG   
Just Accepted Date: 17 November 2020   Online First Date: 10 December 2020    Issue Date: 06 December 2021
 Cite this article:   
Xinran LI,Yanhui LOU,Zhaokui WANG. Light-emission organic solar cells with MoO3:Al interfacial layer–preparation and characterizations[J]. Front. Optoelectron., 2021, 14(4): 499-506.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-020-1103-2
https://academic.hep.com.cn/foe/EN/Y2021/V14/I4/499
Fig.1  (a) Schematic diagram of the light-emitting organic solar cells (LE-OSCs) and the molecule structure of materials upon investigation. (b) Energy levels of the materials in LE-OSCs
Fig.2  Ultraviolet photoelectron spectroscopy (UPS) spectra of pure MoO3, co-evaporated MoO3:Al films. The inset is the enlarged regions of the photoemission secondary-electron cut-offs
Fig.3  Transmittance spectra of P3HT:IC60BA (150 nm) and P3HT:IC60BA (150 nm)/MoO3:Al (5 nm). The dash line is a sign of EL peak of Ir(ppy)3
Fig.4  Current density−voltage (JV) characteristics in the LE-OSCs with and without (W/O) interfacial layer (IL) and the reference device (OSC only) with a structure of ITO/PEDOT (50 nm)/ P3HT:IC60BA (150 nm)/LiF (1 nm)/Al (70 nm) under illumination (100 mW/cm2)
device Vt/V L*/(cd·m−2) Lmax/(cd·m−2) Voc/V Jsc/(mA·cm−2) FF/% PCE/%
OSC-only 0.76 10.85 54 4.45
OLED-only 1.6 9950 40800
tandem (W/O IL) 4.4 20 140 0.45 0.08 22 0.008
tandem (MoO3:Al) 3.2 470 1550 0.70 0.96 36 0.24
Tab.1  PV and EL properties in LE-OSCs with and without (W/O) interfacial layers (IL). The performance of reference devices (OSC only and OLED only) is also shown
Fig.5  EL properties for (a) current density−voltage (J−V) and (b) luminance vs current density (L−J) characteristics, respectively, in LE-OSCs with and without (W/O) interfacial layer (IL) in dark condition
Fig.6  Forward- and reverse-biased current density−voltage (J−V) characteristics of LE-OSCs in dark and under illumination (100 mW/cm2). The insets are the corresponding double-logarithmic plots
Fig.7  Photograph and EL imaging (2 mm × 2 mm) of (a) pinholes, (b) film uniformity and (c) strip lines of P3HT:IC60BA blending films in different samples observed by conventional back light and OLED imaging
1 M A Green, Y Hishikawa, E D Dunlop, D H Levi, J Hohl-Ebinger, M Yoshita, A W Y Ho-Baillie. Solar cell efficiency tables. Progress in Photovoltaics: Research and Applications, 2019, 27(1): 3–12
https://doi.org/10.1002/pip.3102
2 M Jørgensen, K Norrman, S A Gevorgyan, T Tromholt, B Andreasen, F C Krebs. Stability of polymer solar cells. Advanced Materials, 2012, 24(5): 580–612
https://doi.org/10.1002/adma.201104187 pmid: 22213056
3 P Kumar, S Chand. Recent progress and future aspects of organic solar cells. Progress in Photovoltaics: Research and Applications, 2012, 20(4): 377–415
https://doi.org/10.1002/pip.1141
4 R Kroon, M Lenes, J Hummelen, P Blom, B Boer. Small bandgap polymers for organic solar cells (polymer material development in the last 5 years). Polymer Reviews (Philadelphia, Pa.), 2008, 48(3): 531–582
https://doi.org/10.1080/15583720802231833
5 L Dou, J You, J Yang, C Chen, Y He, S Murase, T Moriarty, K Emery, G Li, Y Yang. Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nature Photonics, 2012, 6(3): 180–185
https://doi.org/10.1038/nphoton.2011.356
6 S Honda, T Nogami, H Ohkita, H Benten, S Ito. Improvement of the light-harvesting efficiency in polymer/fullerene bulk heterojunction solar cells by interfacial dye modification. ACS Applied Materials & Interfaces, 2009, 1(4): 804–810
https://doi.org/10.1021/am800229p pmid: 20356005
7 P Suresh, P Balraju, G D Sharma, J A Mikroyannidis, M M Stylianakis. Effect of the incorporation of a low-band-gap small molecule in a conjugated vinylene copolymer: PCBM blend for organic photovoltaic devices. ACS Applied Materials & Interfaces, 2009, 1(7): 1370–1374
https://doi.org/10.1021/am900244y pmid: 20355936
8 M O Reese, A Nardes, M B L Rupert, R E Larsen, D C Olson, M T Lloyd, S E Shaheen, D S Ginley, G Rumbles, N Kopidakis. Photoinduced degradation of polymer and polymer–fullerene active layers: experiment and theory. Advanced Functional Materials, 2010, 20(20): 3476–3483
https://doi.org/10.1002/adfm.201001079
9 J Abad, A Urbina, J Colchero. Influence of UV radiation and ozone exposure on the electro-optical properties and nanoscale structure of P3OT films. Organic Electronics, 2011, 12(8): 1389–1398
https://doi.org/10.1016/j.orgel.2011.05.009
10 F C Krebs, T Tromholt, M Jørgensen. Upscaling of polymer solar cell fabrication using full roll-to-roll processing. Nanoscale, 2010, 2(6): 873–886
https://doi.org/10.1039/b9nr00430k pmid: 20648282
11 S Schäfer, A Petersen, T Wagner, R Kniprath, D Lingenfelser, A Zen, T Kirchartz, B Zimmermann, U Würfel, X Feng, T Mayer. Influence of the indium tin oxide/organic interface on open-circuit voltage, recombination, and cell degradation in organic small-molecule solar cells. Physical Review B, 2011, 83(16): 165311
https://doi.org/10.1103/PhysRevB.83.165311
12 G Yu, J Gao, J Hummelen, F Wudl, A Heeger. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 1995, 270(5243): 1789–1791
https://doi.org/10.1126/science.270.5243.1789
13 M Wang, Q Tang, J An, F Xie, J Chen, S Zheng, K Wong, Q Miao, J Xu. Performance and stability improvement of P3HT:PCBM-based solar cells by thermally evaporated chromium oxide (CrOx) interfacial layer. ACS Applied Materials & Interfaces, 2010, 2(10): 2699–2702
https://doi.org/10.1021/am100541d
14 A W Hains, J Liu, A B F Martinson, M D Irwin, T J Marks. Anode interfacial tuning via electron-blocking/hole-transport layers and indium tin oxide surface treatment in bulk-heterojunction organic photovoltaic cells. Advanced Functional Materials, 2010, 20(4): 595–606
https://doi.org/10.1002/adfm.200901045
15 M Xu, L Cui, X Zhu, C Gao, X Shi, Z Jin, Z Wang, L Liao. Aqueous solution-processed MoO3 as an effective interfacial layer in polymer/fullerene based organic solar cells. Organic Electronics, 2013, 14(2): 657–664
https://doi.org/10.1016/j.orgel.2012.12.016
16 Z Xu, L Chen, G Yang, C Huang, J Hou, Y Wu, G Li, C Hsu, Y Yang. Vertical phase separation in poly(3-hexylthiophene): fullerene derivative blends and its advantage for inverted structure solar cells. Advanced Functional Materials, 2009, 19(8): 1227–1234
https://doi.org/10.1002/adfm.200801286
17 K Norrman, S A Gevorgyan, F C Krebs. Water-induced degradation of polymer solar cells studied by H218O labeling. ACS Applied Materials & Interfaces, 2009, 1(1): 102–112
https://doi.org/10.1021/am800039w pmid: 20355761
18 M Lira-Cantu, K Norrman, J Andreasen, F Krebs. Oxygen release and exchange in niobium oxide MEHPPV hybrid solar cells. Chemistry of Materials, 2006, 18(24): 5684–5690
https://doi.org/10.1021/cm061429d
19 J Alstrup, M Jørgensen, A J Medford, F C Krebs. Ultra fast and parsimonious materials screening for polymer solar cells using differentially pumped slot-die coating. ACS Applied Materials & Interfaces, 2010, 2(10): 2819–2827
https://doi.org/10.1021/am100505e pmid: 20879717
20 N von Malm, J Steiger, R Schmechel, H von Seggern. Trap engineering in organic hole transport materials. Journal of Applied Physics, 2001, 89(10): 5559–5563
https://doi.org/10.1063/1.1362371
21 R Schmechel, H von Seggern. Electronic traps in organic transport layers. Physica Status Solidi, 2004, 201(6): 1215–1235
https://doi.org/10.1002/pssa.200404343
22 W Graupner, G Leditzky, G Leising, U Scherf. Shallow and deep traps in conjugated polymers of high intrachain order. Physical Review B, 1996, 54(11): 7610–7613
https://doi.org/10.1103/PhysRevB.54.7610 pmid: 9984416
23 T Okachi, T Nagase, T Kobayashi, H Naito. Determination of localized-state distributions in organic light-emitting diodes by impedance spectroscopy. Applied Physics Letters, 2009, 94(4): 043301
https://doi.org/10.1063/1.3073043
24 K Harada, M Riede, K Leo, O R Hild, C M Elliott. Pentacene homojunctions: electron and hole transport properties and related photovoltaic responses. Physical Review B, 2008, 77(19): 195212
https://doi.org/10.1103/PhysRevB.77.195212
25 Y Lou, M Xu, L Zhang, Z Wang, S Naka, H Okada, L Liao. Origin of enhanced electrical and conducting properties in pentacene films doped by molybdenum trioxide. Organic Electronics, 2013, 14(10): 2698–2704
https://doi.org/10.1016/j.orgel.2013.07.017
26 T Fuyuki, H Kondo, T Yamazaki, Y Takahashi, Y Uraoka. Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence. Applied Physics Letters, 2005, 86(26): 262108
https://doi.org/10.1063/1.1978979
27 P Würfel, T Trupke, T Puzzer, E Schäffer, W Warta, S Glunz. Diffusion lengths of silicon solar cells from luminescence images. Journal of Applied Physics, 2007, 101(12): 123110
https://doi.org/10.1063/1.2749201
28 O Breitenstein, J Bauer, T Trupke, R Bardos. On the detection of shunts in silicon solar cells by photo-and electroluminescence imaging. Progress in Photovoltaics: Research and Applications, 2008, 16(4): 325–330
https://doi.org/10.1002/pip.803
29 U Rau. Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells. Physical Review B, 2007, 76(8): 085303
https://doi.org/10.1103/PhysRevB.76.085303
30 A Cravino, P Leriche, O Aleveque, S Roquet, J Roncali. Light-emitting organic solar cells based on a 3D conjugated system with internal charge transfer. Advanced Materials, 2006, 18(22): 3033–3037
https://doi.org/10.1002/adma.200601230
31 U Hoyer, M Wagner, T Swonke, J Bachmann, R Auer, A Osvet, C Brabec. Electroluminescence imaging of organic photovoltaic modules. Applied Physics Letters, 2010, 97(23): 233303
https://doi.org/10.1063/1.3521259
32 K Tvingstedt, K Vandewal, A Gadisa, F Zhang, J Manca, O Inganäs. Electroluminescence from charge transfer states in polymer solar cells. Journal of the American Chemical Society, 2009, 131(33): 11819–11824
https://doi.org/10.1021/ja903100p pmid: 19722595
33 J Sun, X Zhu, H Peng, M Wong, H Kwok. Effective intermediate layers for highly efficient stacked organic light-emitting devices. Applied Physics Letters, 2005, 87(9): 093504
https://doi.org/10.1063/1.2035320
34 L Liao, K P Klubek, C W Tang. High-efficiency tandem organic light-emitting diodes. Applied Physics Letters, 2004, 84(2): 167–169
https://doi.org/10.1063/1.1638624
35 H Kanno, R Holmes, Y Sun, S Kena-Cohen, S Forrest. White stacked electrophosphorescent organic light-emitting devices employing MoO3 as a charge-generation layer. Advanced Materials, 2006, 18(3): 339–342
https://doi.org/10.1002/adma.200501915
36 J Sun, X Zhu, H Peng, M Wong, H Kwok. Bright and efficient white stacked organic light-emitting diodes. Organic Electronics, 2007, 8(4): 305–310
https://doi.org/10.1016/j.orgel.2006.11.006
37 S Hamwi, J Meyer, M Kröger, T Winkler, M Witte, T Riedl, A Kahn, W Kowalsky. The role of transition metal oxides in charge-generation layers for stacked organic light-emitting diodes. Advanced Functional Materials, 2010, 20(11): 1762–1766
https://doi.org/10.1002/adfm.201000301
38 S Tokito, K Noda, Y Taga. Metal oxides as a hole-injecting layer for an organic electroluminescent device. Journal of Physics D, Applied Physics, 1996, 29(11): 2750–2753
https://doi.org/10.1088/0022-3727/29/11/004
39 S Murase, Y Yang. Solution processed MoO3 interfacial layer for organic photovoltaics prepared by a facile synthesis method. Advanced Materials, 2012, 24(18): 2459–2462
https://doi.org/10.1002/adma.201104771 pmid: 22488552
40 Y Lou, M Xu, Z Wang, S Naka, H Okada, L Liao. Dual roles of MoO3-doped pentacene thin films as hole-extraction and multicharge-separation functions in pentacene/C60 heterojunction organic solar cells. Applied Physics Letters, 2013, 102(11): 113305
https://doi.org/10.1063/1.4798281
41 A Morfa, K Rowlen, T Reilly, M Romero, J Lagemaat. Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics. Applied Physics Letters, 2008, 92(1): 013504
https://doi.org/10.1063/1.2823578
42 M F Xu, X Z Zhu, X B Shi, J Liang, Y Jin, Z K Wang, L S Liao. Plasmon resonance enhanced optical absorption in inverted polymer/fullerene solar cells with metal nanoparticle-doped solution-processable TiO2 layer. ACS Applied Materials & Interfaces, 2013, 5(8): 2935–2942
https://doi.org/10.1021/am4001979 pmid: 23510437
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed