Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2021, Vol. 14 Issue (2) : 229-251    https://doi.org/10.1007/s12200-021-1121-8
REVIEW ARTICLE
Nanoimprint lithography for high-throughput fabrication of metasurfaces
Dong Kyo OH1, Taejun LEE1, Byoungsu KO1, Trevon BADLOE1, Jong G. OK2(), Junsuk RHO1,3()
1. Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
2. Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology (SEOULTECH), Seoul 01811, Republic of Korea
3. Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
 Download: PDF(7452 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Metasurfaces are composed of periodic subwavelength nanostructures and exhibit optical properties that are not found in nature. They have been widely investigated for optical applications such as holograms, wavefront shaping, and structural color printing, however, electron-beam lithography is not suitable to produce large-area metasurfaces because of the high fabrication cost and low productivity. Although alternative optical technologies, such as holographic lithography and plasmonic lithography, can overcome these drawbacks, such methods are still constrained by the optical diffraction limit. To break through this fundamental problem, mechanical nanopatterning processes have been actively studied in many fields, with nanoimprint lithography (NIL) coming to the forefront. Since NIL replicates the nanopattern of the mold regardless of the diffraction limit, NIL can achieve sufficiently high productivity and patterning resolution, giving rise to an explosive development in the fabrication of metasurfaces. In this review, we focus on various NIL technologies for the manufacturing of metasurfaces. First, we briefly describe conventional NIL and then present various NIL methods for the scalable fabrication of metasurfaces. We also discuss recent applications of NIL in the realization of metasurfaces. Finally, we conclude with an outlook on each method and suggest perspectives for future research on the high-throughput fabrication of active metasurfaces.

Keywords nanoimprint      scalable fabrication      large-area metasurface      tailored nanostructure      hierarchical nano-structures     
Corresponding Author(s): Jong G. OK,Junsuk RHO   
Just Accepted Date: 07 February 2021   Online First Date: 14 April 2021    Issue Date: 14 July 2021
 Cite this article:   
Dong Kyo OH,Taejun LEE,Byoungsu KO, et al. Nanoimprint lithography for high-throughput fabrication of metasurfaces[J]. Front. Optoelectron., 2021, 14(2): 229-251.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-021-1121-8
https://academic.hep.com.cn/foe/EN/Y2021/V14/I2/229
Fig.1  Conventional nanoimprint lithography (NIL) and its replicating performance. (a) Schematics of (i) thermal NIL and (ii) ultraviolet (UV) NIL. (b) Scanning electron microscope (SEM) images of (i) 70 nm wide and 200 nm tall strips and (ii) 25 nm diameter and 120 nm periodicity metal dots manufactured by thermal NIL. Reprinted with permission from Ref. [76], Copyright 1996, American Institute of Physics. (c) SEM images of (i) a silicon oxide mold, (ii) imprinted resin after UV NIL, and (iii) Au contacts after evaporation of metal and lift-off of the resist, showing 5 nm resolution UV NIL for single-molecule contacts. Reprinted with permission from Ref. [80], Copyright 2004, American Institute of Physics
Fig.2  NIL of various materials for fabrication of metasurfaces. (a) (i) Photograph of a flexible plasmonic color device with gold (Au) and (ii) microscope and SEM images of the device. Reprinted with permission from Ref. [86], Copyright 2018, John Wiley & Sons. (b) (i) Photograph of the fabricated 20 mm diameter metalens with poly-silicon (poly-Si), (ii) SEM image of the device, and (iii) single-color augmented reality (AR) images with real objects for red, green, and blue light. Reprinted with permission from Ref. [91], Copyright 2018, Nature Publishing Group. (c) (i) Schematic of a general photonic crystal sensor, SEM images of (ii) a porous silicon dioxide (PSiO2) film and (iii) the grating nanostructures that generate the photonic crystal resonant mode, and (iv) photograph of the photonic crystal fabricated on a quartz slide. Reprinted with permission from Ref. [92], Copyright 2017, John Wiley & Sons. (d) (i) Schematic, SEM images of (ii) cross and (iii) top view of a photonic device with quantum dots (QDs). Reprinted with permission from Ref. [101], Copyright 2017, Nature Publishing Group
Fig.3  Continuous NIL methods. (a) (i) Photograph and SEM image of a 700 nm period, 300 nm linewidth grating pattern with polydimethylsiloxane (PDMS) on a polyethylene terephthalate (PET) substrate by using thermal roll-to-roll (R2R) NIL, (ii) and (iii) photograph and SEM image of a 700 nm period, 300 nm linewidth epoxy silicone grating pattern imprinted on a PET strip by using UV R2R NIL. Reprinted with permission from Ref. [104], Copyright 2008, John Wiley & Sons. (b) (i) Schematic of thermal roll-imprinting lithography (TRL) system for scalable fabrication of PDMS with hierarchical nanostructures, (ii) schematic of dispensing and demolding PDMS, and (iii) SEM image of the dry adhesive composed of PDMS. The scale bar is 30 mm. Reprinted with permission from Ref. [105], Copyright 2018, The Royal Society of Chemistry. (c) Schematic of (i) the custom-designed R2R NIL system and (ii) the fabrication of double-sided microporous membranes and (iii) photograph and (iv) SEM image of an imprinted resin after detaching from the mold. Reprinted with permission from Ref. [106], Copyright 2018, American Chemical Society
Fig.4  R2R NIL optimization and analysis for productive fabrication. (a) (i) Schematic of the manufacturing process for flexible electrodes by UV R2R NIL, (ii) the UV R2R NIL system, and (iii) the forming unit. Reprinted with permission from Ref. [107], Copyright 2017, Institute of Electrical and Electronics Engineers. (b) (i) Experimental equipment used for the R2R process and (ii) phenomenon of UV resin accumulation. Reprinted with permission from Ref. [111], Copyright 2017, American Vacuum Society. (c) (i) Photograph of a compact desktop coating system of conformal doctor blading of a resin and R2R feeding module, (ii) microscope images of the doctor-bladed silsesquioxane (SSQ) films on the flexible PET substrate, and (iii) SEM images of nanodot array fabricated on the SSQ film by R2R NIL. The inset to (iii) is the PDMS mold used in R2R NIL. Reprinted with permission from Ref. [116], Copyright 2017, Korea Nano Technology Research Society
Fig.5  Methods to fabricate large-area R2R NIL molds. (a) (i) Schematic of UV R2R NIL system, (ii) photographs of hard PDMS (h-PDMS)/PDMS composite stamps, and (iii) the corresponding nanopatterns fabricated via UV R2R NIL. Reprinted with permission from Ref. [122], Copyright 2016, The Royal Society of Chemistry. (b) (i) Schematic of R2R NIL to produce nanostructures on a polystyrene (PS) substrate and (ii) photograph of the roller attached by four hybrid molds with anodized aluminum oxide (AAO)/PDMS. Reprinted with permission from Ref. [124], Copyright 2018, John Wiley & Sons. (c) (i) Schematic of the R2R NIL process by tiling flexible molds, (ii) photograph of the R2R NIL using the large-area flexible mold, and (iii) SEM image of the fabricated nanostructures. Reprinted with permission from Ref. [128], Copyright 2015, The Royal Society of Chemistry
Fig.6  Alternative NIL methods using local contact for high productivity. (a) (i) Schematic of the nanochannel-guided lithography (NCL) and SEM images of nanogratings with 200 nm period formed on the perfluoroalkoxy (PFA) substrates (ii) with and (iii) without a liquid SSQ resin. Reprinted with permission from Ref. [131], Copyright 2011, John Wiley & Sons. (b) (i) Schematic of dynamic nanoinscribing (DNI), photographs and SEM images of (ii) the rigid nanograting mold and (iii) the flexible substrate after DNI, and (iv) SEM images of nanopatterns fabricated by DNI. Inset to (iv) is an enlarged perspective view. Reprinted with permission from Ref. [134], Copyright 2019, American Chemical Society. (c) (i) Schematic of vibrational indentation patterning (VIP) with the process parameters and SEM images of grating patterns with 3 mm periods produced by VIP on (ii) 50 nm Au-coated PET and (iii) polyimide (PI). SEM images of (iv) two-dimensional (2D) nanopatterns of 2 mm period fabricated on polycarbonate (PC) and (v) nanostructures with various periods on PC fabricated by modulating the vibration frequency of VIP. Reprinted with permission from Ref. [135], Copyright 2013, John Wiley & Sons
Fig.7  Large-area fabrication of metasurfaces using conventional NIL. (a) (i) Photograph and (ii) SEM image of the large-area metasurface. Reprinted with permission from Ref. [138], Copyright 2020, Elsevier. (b) (i) Schematic of continuous line formation process and (ii) SEM image of the metasurface. Scale bars, 10 mm (large image) and 1 mm (inset). Reprinted with permission from Ref. [139], Copyright 2019, Nature Publishing Group
Fig.8  Continuous fabrication of metasurfaces using R2R NIL. (a) (i) Schematic of anticipated R2R process, (ii) SEM images, and (iii) photographs of the imprinted amorphous polyethylene terephthalate (A-PET) polymer surface. Reprinted with permission from Ref. [144], Copyright 2016, John Wiley & Sons. (b) (i) Schematic of the R2R NIL process fabricating the metal-insulator-metal (MIM)-based metasurfaces and photographs and SEM images of (ii) large-area PDMS mold and (iii) SSQ dot patterns. Reprinted with permission from Ref. [146], Copyright 2012, American Institute of Physics. (c) (i) Schematic of continuous R2R NIL for fabricating plasmonic nanostructures, (ii) photograph and SEM image of angled Au evaporation, and (iii) SEM images after Au evaporation. Reprinted with permission from Ref. [147], Copyright 2017, The Royal Society of Chemistry
Fig.9  NIL methodologies for fabrication of hierarchical nanostructures. (a) (i) Schematic of the fabrication of hierarchical nanohairs by 2-step UV-assisted capillary force lithography and (ii)−(iv) tilted SEM images of large-area hierarchical nanohairs. Reprinted with permission from Ref. [153], Copyright 2009, National Academy of Sciences. (b) (i) Schematic of the two-step light exposure process and SEM images of (ii) a micropattern, (iii) dual-scale structures, and (iv) triple-scale structures with a sub-100 nm size. Reprinted with permission from Ref. [155], Copyright 2017, American Chemical Society. (c) (i) Schematic describing flexible near-field phase-shift lithography (NFPSL) and photographs and SEM images of substrates (ii) before and (iii) after NFPSL. Reprinted with permission from Ref. [163], Copyright 2016, American Chemical Society
Fig.10  Fabrication of NIL molds with smaller nanopatterns. (a) Steps for polymer imprint lithography with nanometer resolution and several repeat units of the PDMS and polyurethane (PU). Reprinted with permission from Ref. [167], Copyright 2004, American Chemical Society. (b) SEM images of (i) original SiO2 master mold with 60 nm half-pitch, (ii) 33 nm wide nanowires (NWs) after etching for 132 s, (iii) 20 nm wide NWs after 189 s etching, and (iv) 9.3 nm wide NWs after 240 s etching. Reprinted with permission from Ref. [169], Copyright 2016, IOP Publishing. (c) (i) Photograph and SEM image of the mold with 200 nm-period nanogratings and SEM images of nanotrenches with widths of (ii) 10 nm and (iii) 5 nm in the hard mold after the atomic layer deposition (ALD) process. Reprinted with permission from Ref. [170], Copyright 2019, Elsevier
Fig.11  Fabrication of nanopatterns with smaller sizes after NIL. (a) (i) Process flow for fabrication of ultrasmall structure with SSQ patterns and SEM images of (ii) nanopillar sample of 140 nm size and (iii) first generation (1-G) nanopatterns with 80 nm size after heated to 700°C. Reprinted with permission from Ref. [173], Copyright 2011, American Chemical Society. (b) SEM images of 1D grating with (i) low and (ii) high duty cycle of etching time and (iii) reflectance of guided-mode resonance (GMR) gratings fabricated with and without line edge roughness. Reprinted with permission from Ref. [174], Copyright 2015, Springer
Fig.12  Applications of NIL for high-throughput fabrication of metasurfaces. (a) (i) Schematic of the color filters with angle-insensitive structures and SEM images of fabricated (ii) yellow, (iii) magenta, and (iv) cyan color filters. Reprinted with permission from Ref. [183], Copyright 2016, John Wiley & Sons. (b) (i) Schematic of meta-mirror fabrication, (ii) optical microscope images of nine meta-mirrors with the size of 300 mm × 300 mm, and (iii) SEM image of the fabricated silver (Ag) meta-mirrors. Reprinted with permission from Ref. [185], Copyright 2020, American Association for the Advancement of Science. (c) (i) Photograph of the metasurface on the flexible substrate, SEM images of (ii) the master mold and (iii) the transferred metasurface on a glass substrate, and (iv) hologram images of the optimized metasurface by radiating lasers of l = 450, 532, and 635 nm, respectively. Reprinted with permission from Ref. [188], Copyright 2019, American Chemical Society. (d) Fabrication schematic of plum pudding metalens using nanoparticle composite NIL and SEM images of (i) master mold, (ii) soft mold, and (iii) final metasurfaces, respectively. All scale bars: 1 mm. (Insets) Optical microscope images of each. All scale bars: 100 mm. Reprinted with permission from Ref. [189], Copyright 2020, Nature Publishing Group
1 F Lemoult, N Kaina, M Fink, G Lerosey. Wave propagation control at the deep subwavelength scale in metamaterials. Nature Physics, 2013, 9(11): 55–60
https://doi.org/10.1038/nphys2480
2 C W Lee, H J Choi, H Jeong. Tunable metasurfaces for visible and SWIR applications. Nano Convergence, 2020, 7(1): 3
https://doi.org/10.1186/s40580-019-0213-2 pmid: 31956942
3 Y Chen, B Ai, Z J Wong. Soft optical metamaterials. Nano Convergence, 2020, 7(1): 18
https://doi.org/10.1186/s40580-020-00226-7 pmid: 32451734
4 M Lawrence, D R Barton 3rd, J Dixon, J H Song, J van de Groep, M L Brongersma, J A Dionne. High quality factor phase gradient metasurfaces. Nature Nanotechnology, 2020, 15(11): 956–961
https://doi.org/10.1038/s41565-020-0754-x pmid: 32807879
5 G Yoon, D Lee, K T Nam, J Rho. Geometric metasurface enabling polarization independent beam splitting. Scientific Reports, 2018, 8(1): 9468
https://doi.org/10.1038/s41598-018-27876-2 pmid: 29930258
6 P C Wu, R A Pala, G Kafaie Shirmanesh, W H Cheng, R Sokhoyan, M Grajower, M Z Alam, D Lee, H A Atwater. Dynamic beam steering with all-dielectric electro-optic III-V multiple-quantum-well metasurfaces. Nature Communications, 2019, 10(1): 3654
https://doi.org/10.1038/s41467-019-11598-8 pmid: 31409790
7 Z J Wong, Y Wang, K O’Brien, J Rho, X B Yin, S Zhang, N Fang, T J Yen, X Zhang. Optical and acoustic metamaterials: Superlens, negative refractive index and invisibility cloak. Journal of Optics, 2017, 19(8): 084007
https://doi.org/10.1088/2040-8986/aa7a1f
8 S Bang, S So, J Rho. Realization of broadband negative refraction in visible range using vertically stacked hyperbolic metamaterials. Scientific Reports, 2019, 9(1): 14093
https://doi.org/10.1038/s41598-019-50434-3 pmid: 31575903
9 N Yu, F Capasso. Flat optics with designer metasurfaces. Nature Materials, 2014, 13(2): 139–150
https://doi.org/10.1038/nmat3839 pmid: 24452357
10 D Lee, Y Yang, G Yoon, M Kim, J Rho. Resolution enhancement of fluorescence microscopy using encoded patterns from all-dielectric metasurfaces. Applied Physics Letters, 2019, 115(10): 101102
https://doi.org/10.1063/1.5119006
11 D Lee, M Kim, J Kim, H Hong, T Badloe, D S Kim, J Rho. All-dielectric metasurface imaging platform applicable to laser scanning microscopy with enhanced axial resolution and wavelength selection. Optical Materials Express, 2019, 9(8): 3248–3259
https://doi.org/10.1364/OME.9.003248
12 M Kim, J Rho. Metamaterials and imaging. Nano Convergence, 2015, 2(1): 22
https://doi.org/10.1186/s40580-015-0053-7 pmid: 28191408
13 M Byun, D Lee, M Kim, Y Kim, K Kim, J G Ok, J Rho, H Lee. Demonstration of nanoimprinted hyperlens array for high-throughput sub-diffraction imaging. Scientific Reports, 2017, 7(1): 46314
https://doi.org/10.1038/srep46314 pmid: 28393906
14 D Lee, Y D Kim, M Kim, S So, H J Choi, J Mun, D M Nguyen, T Badloe, J G Ok, K Kim, H Lee, J Rho. Realization of wafer-scale hyperlens device for sub-diffractional biomolecular imaging. ACS Photonics, 2018, 5(7): 2549–2554
https://doi.org/10.1021/acsphotonics.7b01182
15 J Jang, T Badloe, Y Yang, T Lee, J Mun, J Rho. Spectral modulation through the hybridization of Mie-scatterers and quasi-guided mode resonances: realizing full and gradients of structural color. ACS Nano, 2020, 14(11): 15317–15326
https://doi.org/10.1021/acsnano.0c05656 pmid: 33090760
16 R Mudachathi, T Tanaka. Up scalable full colour plasmonic pixels with controllable hue, brightness and saturation. Scientific Reports, 2017, 7(1): 1199
https://doi.org/10.1038/s41598-017-01266-6 pmid: 28446794
17 Y Lee, M K Park, S Kim, J H Shin, C Moon, J Y Hwang, J C Choi, H Park, H R Kim, J E Jang. Electrical broad tuning of plasmonic color filter employing an asymmetric-lattice nanohole array of metasurface controlled by polarization rotator. ACS Photonics, 2017, 4(8): 1954–1966
https://doi.org/10.1021/acsphotonics.7b00249
18 D Lee, J Gwak, T Badloe, S Palomba, J Rho. Metasurfaces-based imaging and applications: from miniaturized optical components to functional imaging platforms. Nanoscale Advances, 2020, 2(2): 605–625
https://doi.org/10.1039/C9NA00751B
19 T Lee, J Jang, H Jeong, J Rho. Plasmonic- and dielectric-based structural coloring: from fundamentals to practical applications. Nano Convergence, 2018, 5(1): 1
https://doi.org/10.1186/s40580-017-0133-y pmid: 29375956
20 M Kim, I Kim, J Jang, D Lee, K T Nam, J Rho. Active color control in a metasurface by polarization rotation. Applied Sciences (Basel, Switzerland), 2018, 8(6): 982
https://doi.org/10.3390/app8060982
21 G Yoon, D Lee, K T Nam, J Rho. “Crypto-display” in dual-mode metasurfaces by simultaneous control of phase and spectral responses. ACS Nano, 2018, 12(7): 6421–6428
https://doi.org/10.1021/acsnano.8b01344 pmid: 29924588
22 J Jang, K Kang, N Raeis-Hosseini, A Ismukhanova, H Jeong, C Jung, B Kim, J Y Lee, I Park, J Rho. Self-powered humidity sensor using chitosan-based plasmonic metal-hydrogel-metal filters. Advanced Optical Materials, 2020, 8(9): 1901932
https://doi.org/10.1002/adom.201901932
23 R A Aoni, M Rahmani, L Xu, K Zangeneh Kamali, A Komar, J Yan, D Neshev, A E Miroshnichenko. High-efficiency visible light manipulation using dielectric metasurfaces. Scientific Reports, 2019, 9(1): 6510
https://doi.org/10.1038/s41598-019-42444-y pmid: 31019220
24 J Jang, T Badloe, Y C Sim, Y Yang, J Mun, T Lee, Y H Cho, J Rho. Full and gradient structural colouration by lattice amplified gallium nitride Mie-resonators. Nanoscale, 2020, 12(41): 21392–21400
https://doi.org/10.1039/D0NR05624C pmid: 33078822
25 I Kim, M A Ansari, M Q Mehmood, W S Kim, J Jang, M Zubair, Y K Kim, J Rho. Stimuli-responsive dynamic metaholographic displays with designer liquid crystal modulators. Advanced Materials, 2020, 32(50): e2004664
https://doi.org/10.1002/adma.202004664 pmid: 33169455
26 I Kim, G Yoon, J Jang, P Genevet, K T Nam, J Rho. Outfitting next generation displays with optical metasurfaces. ACS Photonics, 2018, 5(10): 3876–3895
https://doi.org/10.1021/acsphotonics.8b00809
27 Z Li, I Kim, L Zhang, M Q Mehmood, M S Anwar, M Saleem, D Lee, K T Nam, S Zhang, B Luk’yanchuk, Y Wang, G Zheng, J Rho, C W Qiu. Dielectric meta-holograms enabled with dual magnetic resonances in visible light. ACS Nano, 2017, 11(9): 9382–9389
https://doi.org/10.1021/acsnano.7b04868 pmid: 28898048
28 G Y Lee, G Yoon, S Y Lee, H Yun, J Cho, K Lee, H Kim, J Rho, B Lee. Complete amplitude and phase control of light using broadband holographic metasurfaces. Nanoscale, 2018, 10(9): 4237–4245
https://doi.org/10.1039/C7NR07154J pmid: 29350732
29 M A Ansari, I Kim, D Lee, M H Waseem, M Zubair, N Mahmood, T Badloe, S Yerci, T Tauqeer, M Q Mehmood, J Rho. A spin-encoded all-dielectric metahologram for visible light. Laser & Photonics Reviews, 2019, 13(5): 1900065
https://doi.org/10.1002/lpor.201900065
30 G Yoon, J Kim, J Mun, D Lee, K T Nam, J Rho. Wavelength-decoupled geometric metasurfaces by arbitrary dispersion control. Communications on Physics, 2019, 2(1): 129
https://doi.org/10.1038/s42005-019-0232-7
31 M A Ansari, I Kim, I D Rukhlenko, M Zubair, S Yerci, T Tauqeer, M Q Mehmood, J Rho. Engineering spin and antiferromagnetic resonances to realize an efficient direction-multiplexed visible meta-hologram. Nanoscale Horizons, 2020, 5(1): 57–64
https://doi.org/10.1039/C9NH00460B
32 G Yoon, D Lee, K T Nam, J Rho. Pragmatic metasurface hologram at visible wavelength: the balance between diffraction efficiency and fabrication compatibility. ACS Photonics, 2018, 5(5): 1643–1647
https://doi.org/10.1021/acsphotonics.7b01044
33 H Ren, X Fang, J Jang, J Bürger, J Rho, S A Maier. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nature Nanotechnology, 2020, 15(11): 948–955
https://doi.org/10.1038/s41565-020-0768-4 pmid: 32958936
34 A S Rana, M Q Mehmood, H Jeong, I Kim, J Rho. Tungsten-based ultrathin absorber for visible regime. Scientific Reports, 2018, 8(1): 2443
https://doi.org/10.1038/s41598-018-20748-9 pmid: 29403065
35 F B Barho, F Gonzalez-Posada, L Cerutti, T Taliercio. Heavily doped semiconductor metamaterials for mid-infrared multispectral perfect absorption and thermal emission. Advanced Optical Materials, 2020, 8(6): 1901502
https://doi.org/10.1002/adom.201901502
36 G Yoon, S So, M Kim, J Mun, R Ma, J Rho. Electrically tunable metasurface perfect absorber for infrared frequencies. Nano Convergence, 2017, 4(1): 36
https://doi.org/10.1186/s40580-017-0131-0 pmid: 29291156
37 D M Nguyen, D Lee, J Rho. Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths. Scientific Reports, 2017, 7(1): 2611
https://doi.org/10.1038/s41598-017-02847-1 pmid: 28572672
38 T Badloe, J Mun, J Rho. Metasurfaces-based absorption and reflection control: perfect absorbers and reflectors. Journal of Nanomaterials, 2017, 2017(1): 2361042
https://doi.org/10.1155/2017/2361042
39 T Badloe, I Kim, J Rho. Moth-eye shaped on-demand broadband and switchable perfect absorbers based on vanadium dioxide. Scientific Reports, 2020, 10(1): 4522
https://doi.org/10.1038/s41598-020-59729-2 pmid: 32161273
40 T Badloe, I Kim, J Rho. Biomimetic ultra-broadband perfect absorbers optimised with reinforcement learning. Physical Chemistry Chemical Physics, 2020, 22(4): 2337–2342
https://doi.org/10.1039/C9CP05621A pmid: 31932814
41 I Kim, S So, A S Rana, M Q Mehmood, J Rho. Thermally robust ring-shaped chromium perfect absorber of visible light. Nanophotonics, 2018, 7(11): 1827–1833
https://doi.org/10.1515/nanoph-2018-0095
42 I Sajedian, T Badloe, H Lee, J Rho. Deep Q-network to produce polarization-independent perfect solar absorbers: a statistical report. Nano Convergence, 2020, 7(1): 26
https://doi.org/10.1186/s40580-020-00233-8 pmid: 32748091
43 G Yoon, J Jang, J Mun, K T Nam, J Rho. Metasurface zone plate for light manipulation in vectorial regime. Communications on Physics, 2019, 2(1): 156
https://doi.org/10.1038/s42005-019-0258-x
44 X Yin, Z Ye, J Rho, Y Wang, X Zhang. Photonic spin Hall effect at metasurfaces. Science, 2013, 339(6126): 1405–1407
https://doi.org/10.1126/science.1231758 pmid: 23520105
45 Y H Wang, R C Jin, J Q Li, F Zhong, H Liu, I Kim, Y Jo, J Rho, Z G Dong. Photonic spin hall effect by the spin-orbit interaction in a metasurface with elliptical nano-structures. Applied Physics Letters, 2017, 110(10): 101908
https://doi.org/10.1063/1.4978520
46 Y H Wang, I Kim, R C Jin, H Jeong, J Q Li, Z G Dong, J Rho. Experimental verification of asymmetric transmission in continuous omega-shaped metamaterials. RSC Advances, 2018, 8(67): 38556–38561
https://doi.org/10.1039/C8RA08073A
47 J Hong, S J Kim, I Kim, H Yun, S E Mun, J Rho, B Lee. Plasmonic metasurface cavity for simultaneous enhancement of optical electric and magnetic fields in deep subwavelength volume. Optics Express, 2018, 26(10): 13340–13348
https://doi.org/10.1364/OE.26.013340 pmid: 29801359
48 I Kim, S So, J Mun, K H Lee, J H Lee, T Lee, J Rho. Optical characterizations and thermal analyses of HfO2/SiO2 multilayered diffraction gratings for high-power continuous wave laser. Journal of Physics: Photonics, 2020, 2(2): 025004
https://doi.org/10.1088/2515-7647/ab7b0f
49 N Mahmood, I Kim, M Q Mehmood, H Jeong, A Akbar, D Lee, M Saleem, M Zubair, M S Anwar, F A Tahir, J Rho. Polarisation insensitive multifunctional metasurfaces based on all-dielectric nanowaveguides. Nanoscale, 2018, 10(38): 18323–18330
https://doi.org/10.1039/C8NR05633A pmid: 30255919
50 N Mahmood, H Jeong, I Kim, M Q Mehmood, M Zubair, A Akbar, M Saleem, M S Anwar, F A Tahir, J Rho. Twisted non-diffracting beams through all dielectric meta-axicons. Nanoscale, 2019, 11(43): 20571–20578
https://doi.org/10.1039/C9NR04888J pmid: 31637386
51 Z Li, Q Dai, M Q Mehmood, G Hu, B L Yanchuk, J Tao, C Hao, I Kim, H Jeong, G Zheng, S Yu, A Alù, J Rho, C W Qiu. Full-space cloud of random points with a scrambling metasurface. Light, Science & Applications, 2018, 7(1): 63
https://doi.org/10.1038/s41377-018-0064-3 pmid: 30245810
52 G Yoon, D Lee, J Rho. Demonstration of equal-intensity beam generation by dielectric metasurfaces. Journal of Visualized Experiments, 2019, 148(148): e59066
https://doi.org/10.3791/59066 pmid: 31233027
53 H E Lee, H Y Ahn, J Mun, Y Y Lee, M Kim, N H Cho, K Chang, W S Kim, J Rho, K T Nam. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature, 2018, 556(7701): 360–365
https://doi.org/10.1038/s41586-018-0034-1 pmid: 29670265
54 N Raeis-Hosseini, J Rho. Dual-functional nanoscale devices using phase-change materials: a reconfigurable perfect absorber with nonvolatile resistance-change memory characteristics. Applied Sciences (Basel, Switzerland), 2019, 9(3): 564
https://doi.org/10.3390/app9030564
55 N Raeis-Hosseini, J Rho. Metasurfaces based on phase-change material as a reconfigurable platform for multifunctional devices. Materials (Basel), 2017, 10(9): 1046
https://doi.org/10.3390/ma10091046 pmid: 28878196
56 G Yoon, I Kim, S So, J Mun, M Kim, J Rho. Fabrication of three-dimensional suspended, interlayered and hierarchical nanostructures by accuracy-improved electron beam lithography overlay. Scientific Reports, 2017, 7(1): 6668
https://doi.org/10.1038/s41598-017-06833-5 pmid: 28751643
57 I C Seo, B H Woo, S C An, E Lee, H Y Jeong, Y Lim, Y C Jun. Electron-beam-induced nanopatterning of J-aggregate thin films for excitonic and photonic response control. Advanced Optical Materials, 2018, 6(20): 1800583
https://doi.org/10.1002/adom.201800583
58 C Jung, Y Yang, J Jang, T Badloe, T Lee, J Mun, S W Moon, J Rho. Near-zero reflection of all-dielectric structural coloration enabling polarization-sensitive optical encryption with enhanced switchability. Nanophotonics, 2020, 10(2): 919–926
https://doi.org/10.1515/nanoph-2020-0440
59 J Zhou, H Qian, C F Chen, J Zhao, G Li, Q Wu, H Luo, S Wen, Z Liu. Optical edge detection based on high-efficiency dielectric metasurface. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(23): 11137–11140
https://doi.org/10.1073/pnas.1820636116 pmid: 31101711
60 T Jeon, D H Kim, S G Park. Holographic fabrication of 3D nanostructures. Advanced Materials Interfaces, 2018, 5(18): 1800330
https://doi.org/10.1002/admi.201800330
61 Y Oh, J W Lim, J G Kim, H Wang, B H Kang, Y W Park, H Kim, Y J Jang, J Kim, D H Kim, B K Ju. Plasmonic periodic nanodot arrays via laser interference lithography for organic photovoltaic cells with >10% efficiency. ACS Nano, 2016, 10(11): 10143–10151
https://doi.org/10.1021/acsnano.6b05313 pmid: 27809471
62 S Bagheri, N Strohfeldt, F Sterl, A Berrier, A Tittl, H Giessen. Large-area low-cost plasmonic perfect absorber chemical sensor fabricated by laser interference lithography. ACS Sensors, 2016, 1(9): 1148–1154
https://doi.org/10.1021/acssensors.6b00444
63 Y S Do. A highly reproducible fabrication process for large-area plasmonic filters for optical applications. IEEE Access: Practical Innovations, Open Solutions, 2018, 6(1): 68961–68967
https://doi.org/10.1109/ACCESS.2018.2880456
64 M Song, X Li, M Pu, Y Guo, K Liu, H Yu, X Ma, X Luo. Color display and encryption with a plasmonic polarizing metamirror. Nanophotonics, 2018, 7(1): 323–331
https://doi.org/10.1515/nanoph-2017-0062
65 Z Gan, J Cai, C Liang, L Chen, S Min, X Cheng, D Cui, W D Li. Patterning of high-aspect-ratio nanogratings using phase-locked two-beam fiber-optic interference lithography. Journal of Vacuum Science & Technology B, Microelectronics and Nanometer Structures, 2019, 37(6): 060601
66 G Liang, C Wang, Z Zhao, Y Wang, N Yao, P Gao, Y Luo, G Gao, Q Zhao, X Luo. Squeezing bulk plasmon polaritons through hyperbolic metamaterials for large area deep subwavelength interference lithography. Advanced Optical Materials, 2015, 3(9): 1248–1256
https://doi.org/10.1002/adom.201400596
67 H C Liu, W J Kong, Q G Zhu, Y Zheng, K S Shen, J Zhang, H Lu. Plasmonic interference lithography by coupling the bulk plasmon polariton mode and the waveguide mode. Journal of Physics D, Applied Physics, 2020, 53(13): 135103
https://doi.org/10.1088/1361-6463/ab6430
68 P Gao, M Pu, X Ma, X Li, Y Guo, C Wang, Z Zhao, X Luo. Plasmonic lithography for the fabrication of surface nanostructures with a feature size down to 9 nm. Nanoscale, 2020, 12(4): 2415–2421
https://doi.org/10.1039/C9NR08153D pmid: 31750491
69 J Luo, B Zeng, C Wang, P Gao, K Liu, M Pu, J Jin, Z Zhao, X Li, H Yu, X Luo. Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography. Nanoscale, 2015, 7(44): 18805–18812
https://doi.org/10.1039/C5NR05153C pmid: 26507847
70 C Wang, W Zhang, Z Zhao, Y Wang, P Gao, Y Luo, X Luo. Plasmonic structures, materials and lenses for optical lithography beyond the diffraction limit: A review. Micromachines, 2016, 7(7): 118
https://doi.org/10.3390/mi7070118 pmid: 30404291
71 S K Kim. Impact of plasmonic parameters on 7-nm patterning in plasmonic computational lithography. Journal of Nanoscience and Nanotechnology, 2018, 18(10): 7124–7127
https://doi.org/10.1166/jnn.2018.15483 pmid: 29954545
72 F Hong, R Blaikie. Plasmonic lithography: recent progress. Advanced Optical Materials, 2019, 7(14): 1801653
https://doi.org/10.1002/adom.201801653
73 I Kim, J Mun, K M Baek, M Kim, C Hao, C W Qiu, Y S Jung, J Rho. Cascade domino lithography for extreme photon squeezing. Materials Today, 2020, 39(1): 89–97
https://doi.org/10.1016/j.mattod.2020.06.002
74 I Kim, J Mun, W Hwang, Y Yang, J Rho. Capillary-force-induced collapse lithography for controlled plasmonic nanogap structures. Microsystems & Nanoengineering, 2020, 6(1): 65
https://doi.org/10.1038/s41378-020-0177-8
75 V B Nam, T T Giang, S Koo, J Rho, D Lee. Laser digital patterning of conductive electrodes using metal oxide nanomaterials. Nano Convergence, 2020, 7(1): 23
https://doi.org/10.1186/s40580-020-00232-9 pmid: 32632474
76 S Y Chou, P R Krauss, P J Renstrom. Nanoimprint lithography. Journal of Vacuum Science & Technology B, Microelectronics and Nanometer Structures: Processing, Measurement, and Phenomena, 1996, 14(6): 4129–4133
https://doi.org/10.1116/1.588605
77 S Y Chou, P R Krauss, P J Renstrom. Imprint lithography with 25-nanometer resolution. Science, 1996, 272(5258): 85–87
https://doi.org/10.1126/science.272.5258.85
78 S Y Chou. Sub-10 nm imprint lithography and applications. Journal of Vacuum Science & Technology B, Microelectronics and Nanometer Structures: Processing, Measurement, and Phenomena, 1997, 15(6): 2897–2904
https://doi.org/10.1116/1.589752
79 J Haisma, M Verheijen, K van den Heuvel, J van den Berg. Mold-assisted nanolithography: a process for reliable pattern replication. Journal of Vacuum Science & Technology B, Microelectronics and Nanometer Structures: Processing, Measurement, and Phenomena, 1996, 14(6): 4124–4128
https://doi.org/10.1116/1.588604
80 M D Austin, H Ge, W Wu, M Li, Z Yu, D Wasserman, S A Lyon, S Y Chou. Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography. Applied Physics Letters, 2004, 84(26): 5299–5301
https://doi.org/10.1063/1.1766071
81 U Plachetka, M Bender, A Fuchs, B Vratzov, T Glinsner, F Lindner, H Kurz. Wafer scale patterning by soft UV-nanoimprint lithography. Microelectronic Engineering, 2004, 73–74(1): 167–171
https://doi.org/10.1016/S0167-9317(04)00093-0
82 S V Sreenivasan. Nanoimprint lithography steppers for volume fabrication of leading-edge semiconductor integrated circuits. Microsystems & Nanoengineering, 2017, 3(1): 17075
https://doi.org/10.1038/micronano.2017.75 pmid: 31057889
83 W Qiao, W Huang, Y Liu, X Li, L S Chen, J X Tang. Toward scalable flexible nanomanufacturing for photonic structures and devices. Advanced Materials, 2016, 28(47): 10353–10380
https://doi.org/10.1002/adma.201601801 pmid: 27976840
84 M C Traub, W Longsine, V N Truskett. Advances in nanoimprint lithography. Annual Review of Chemical and Biomolecular Engineering, 2016, 7(1): 583–604
https://doi.org/10.1146/annurev-chembioeng-080615-034635 pmid: 27070763
85 M Kim, D Lee, T H Kim, Y Yang, H J Park, J Rho. Observation of enhanced optical spin hall effect in a vertical hyperbolic metamaterial. ACS Photonics, 2019, 6(10): 2530–2536
https://doi.org/10.1021/acsphotonics.9b00904
86 M Atighilorestani, H Jiang, B Kaminska. Electrochromic-polymer-based switchable plasmonic color devices using surface-relief nanostructure pixels. Advanced Optical Materials, 2018, 6(23): 1801179
https://doi.org/10.1002/adom.201801179
87 D Lee, S Y Han, Y Jeong, D M Nguyen, G Yoon, J Mun, J Chae, J H Lee, J G Ok, G Y Jung, H J Park, K Kim, J Rho. Polarization-sensitive tunable absorber in visible and near-infrared regimes. Scientific Reports, 2018, 8(1): 12393
https://doi.org/10.1038/s41598-018-30835-6 pmid: 30120371
88 H Zhang, C Kinnear, P Mulvaney. Fabrication of single-nanocrystal arrays. Advanced Materials, 2020, 32(18): e1904551
https://doi.org/10.1002/adma.201904551 pmid: 31576618
89 G Yoon, I Kim, J Rho. Challenges in fabrication towards realization of practical metamaterials. Microelectronic Engineering, 2016, 163(1): 7–20
https://doi.org/10.1016/j.mee.2016.05.005
90 Y Yao, H Liu, Y Wang, Y Li, B Song, R P Wang, M L Povinelli, W Wu. Nanoimprint-defined, large-area meta-surfaces for unidirectional optical transmission with superior extinction in the visible-to-infrared range. Optics Express, 2016, 24(14): 15362–15372
https://doi.org/10.1364/OE.24.015362 pmid: 27410812
91 G Y Lee, J Y Hong, S Hwang, S Moon, H Kang, S Jeon, H Kim, J H Jeong, B Lee. Metasurface eyepiece for augmented reality. Nature Communications, 2018, 9(1): 4562
https://doi.org/10.1038/s41467-018-07011-5 pmid: 30385830
92 Y H Wan, N A Krueger, C R Ocier, P Su, P V Braun, B T Cunningham. Resonant mode engineering of photonic crystal sensors clad with ultralow refractive index porous silicon dioxide. Advanced Optical Materials, 2017, 5(21): 1700605
https://doi.org/10.1002/adom.201700605
93 B R Sutherland, E H Sargent. Perovskite photonic sources. Nature Photonics, 2016, 10(5): 295–302
https://doi.org/10.1038/nphoton.2016.62
94 D H Chun, Y J Choi, Y In, J K Nam, Y J Choi, S Yun, W Kim, D Choi, D Kim, H Shin, J H Cho, J H Park. Halide perovskite nanopillar photodetector. ACS Nano, 2018, 12(8): 8564–8571
https://doi.org/10.1021/acsnano.8b04170 pmid: 30001099
95 N Pourdavoud, S Wang, A Mayer, T Hu, Y Chen, A Marianovich, W Kowalsky, R Heiderhoff, H C Scheer, T Riedl. Photonic nanostructures patterned by thermal nanoimprint directly into organo-metal halide perovskites. Advanced Materials, 2017, 29(12): 1605003
https://doi.org/10.1002/adma.201605003 pmid: 28102599
96 J Mao, W E I Sha, H Zhang, X G Ren, J Q Zhuang, V A L Roy, K S Wong, W C H Choy. Novel direct nanopatterning approach to fabricate periodically nanostructured perovskite for optoelectronic applications. Advanced Functional Materials, 2017, 27(10): 1606525
https://doi.org/10.1002/adfm.201606525
97 S V Makarov, V Milichko, E V Ushakova, M Omelyanovich, A C Pasaran, R Haroldson, B Balachandran, H L Wang, W Hu, Y S Kivshar, A A Zakhidov. Multifold emission enhancement in nanoimprinted hybrid perovskite metasurfaces. ACS Photonics, 2017, 4(4): 728–735
https://doi.org/10.1021/acsphotonics.6b00940
98 H Wang, S C Liu, B Balachandran, J Moon, R Haroldson, Z Li, A Ishteev, Q Gu, W Zhou, A Zakhidov, W Hu. Nanoimprinted perovskite metasurface for enhanced photoluminescence. Optics Express, 2017, 25(24): A1162–A1171
https://doi.org/10.1364/OE.25.0A1162 pmid: 29221064
99 S W Baek, P Molet, M J Choi, M Biondi, O Ouellette, J Fan, S Hoogland, F P García de Arquer, A Mihi, E H Sargent. Nanostructured back reflectors for efficient colloidal quantum-dot infrared optoelectronics. Advanced Materials, 2019, 31(33): e1901745
https://doi.org/10.1002/adma.201901745 pmid: 31222877
100 Y Kim, K Bicanic, H Tan, O Ouellette, B R Sutherland, F P García de Arquer, J W Jo, M Liu, B Sun, M Liu, S Hoogland, E H Sargent. Nanoimprint-transfer-patterned solids enhance light absorption in colloidal quantum dot solar cells. Nano Letters, 2017, 17(4): 2349–2353
https://doi.org/10.1021/acs.nanolett.6b05241 pmid: 28287738
101 C Pina-Hernandez, A Koshelev, S Dhuey, S Sassolini, M Sainato, S Cabrini, K Munechika. Nanoimprinted high-refractive index active photonic nanostructures based on quantum dots for visible light. Scientific Reports, 2017, 7(1): 17645
https://doi.org/10.1038/s41598-017-17732-0 pmid: 29247228
102 L J Guo. Nanoimprint lithography: methods and material requirements. Advanced Materials, 2007, 19(4): 495–513
https://doi.org/10.1002/adma.200600882
103 C Wang, J Shao, H Tian, X Li, Y Ding, B Q Li. Step-controllable electric-field-assisted nanoimprint lithography for uneven large-area substrates. ACS Nano, 2016, 10(4): 4354–4363
https://doi.org/10.1021/acsnano.5b08032 pmid: 27015525
104 S H Ahn, L J Guo. High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates. Advanced Materials, 2008, 20(11): 2044–2049
https://doi.org/10.1002/adma.200702650
105 S H Lee, S W Kim, B S Kang, P S Chang, M K Kwak. Scalable and continuous fabrication of bio-inspired dry adhesives with a thermosetting polymer. Soft Matter, 2018, 14(14): 2586–2593
https://doi.org/10.1039/C7SM02354E pmid: 29442124
106 H C Wong, G Grenci, J Wu, V Viasnoff, H Y Low. Roll-to-roll fabrication of residual-layer-free micro/nanoscale membranes with precise pore architectures and tunable surface textures. Industrial & Engineering Chemistry Research, 2018, 57(41): 13759–13768
https://doi.org/10.1021/acs.iecr.8b03867
107 Z Z Wang, P Y Yi, L F Peng, X M Lai, J Ni. Continuous fabrication of highly conductive and transparent Ag mesh electrodes for flexible electronics. IEEE Transactions on Nanotechnology, 2017, 16(4): 687–694
https://doi.org/10.1109/TNANO.2017.2705173
108 P Y Yi, C P Zhang, L F Peng, X M Lai. Flexible silver-mesh electrodes with moth-eye nanostructures for transmittance enhancement by double-sided roll-to-roll nanoimprint lithography. RSC Advances, 2017, 7(77): 48835–48840
https://doi.org/10.1039/C7RA09149D
109 N Lee, S Yoo, C H Kim, J Lim. Development of continuous metal patterns using two-dimensional atmospheric-pressure plasma-jet: On application to fabricate electrode on a flexible surface for film touch sensor. Journal of Micromechanics and Microengineering, 2019, 29(4): 045013
https://doi.org/10.1088/1361-6439/ab0705
110 L J Wang, Y S Zheng, C Wu, S L Jia. Experimental investigation of photoresist etching by kHz AC atmospheric pressure plasma jet. Applied Surface Science, 2016, 385(1): 191–198
https://doi.org/10.1016/j.apsusc.2016.05.126
111 Y Q Zhou, M J Li, L G Shen, H C Ye, J P Wang, S Z Huang. Effect of resin accumulation on filling process in roll-to-roll UV imprint lithography. Journal of Vacuum Science & Technology B, Microelectronics and Nanometer Structures, 2017, 35(3): 031602
112 U Tahir, M A Kamran, M Y Jeong. Numerical study on the optimization of roll-to-roll ultraviolet imprint lithography. Coatings, 2019, 9(9): 573
https://doi.org/10.3390/coatings9090573
113 F Kotz, N Schneider, A Striegel, A Wolfschläger, N Keller, M Worgull, W Bauer, D Schild, M Milich, C Greiner, D Helmer, B E Rapp. Glassomer-processing fused silica glass like a polymer. Advanced Materials, 2018, 30(22): e1707100
https://doi.org/10.1002/adma.201707100 pmid: 29611238
114 M Leitgeb, D Nees, S Ruttloff, U Palfinger, J Götz, R Liska, M R Belegratis, B Stadlober. Multilength scale patterning of functional layers by roll-to-roll ultraviolet-light-assisted nanoimprint lithography. ACS Nano, 2016, 10(5): 4926–4941
https://doi.org/10.1021/acsnano.5b07411 pmid: 27023664
115 S Koo, S H Lee, J D Kim, J G Hong, H W Baac, M K Kwak, J G Ok. Controlled airbrush coating of polymer resists in roll-to-roll nanoimprinting with regimented residual layer thickness. International Journal of Precision Engineering and Manufacturing, 2016, 17(7): 943–947
https://doi.org/10.1007/s12541-016-0115-8
116 J H Lee, M Na, J Kim, K Yoo, J Park, J D Kim, D K Oh, S Lee, H Youn, M K Kwak, J G Ok. Rapid and conformal coating of polymer resins by airbrushing for continuous and high-speed roll-to-roll nanopatterning: parametric quality controls and extended applications. Nano Convergence, 2017, 4(1): 11
https://doi.org/10.1186/s40580-017-0105-2 pmid: 28529841
117 N Kodihalli Shivaprakash, T Ferraguto, A Panwar, S S Banerjee, C F Barry, J Mead. Fabrication of flexible polymer molds for polymer microstructuring by roll-to-roll hot embossing. ACS Omega, 2019, 4(7): 12480–12488
https://doi.org/10.1021/acsomega.9b01468 pmid: 31460367
118 A Striegel, M Schneider, N Schneider, C Benkel, M Worgull. Seamless tool fabrication for roll-to-roll microreplication. Microelectronic Engineering, 2018, 194(1): 8–14
https://doi.org/10.1016/j.mee.2018.02.022
119 X Q Zhang, R Huang, K Liu, A S Kumar, X C Shan. Rotating-tool diamond turning of Fresnel lenses on a roller mold for manufacturing of functional optical film. Precision Engineering, 2018, 51(1): 445–457
https://doi.org/10.1016/j.precisioneng.2017.09.016
120 Y H Lee, K C Ke, N W Chang, S Y Yang. Development of an UV rolling system for fabrication of micro/nano structure on polymeric films using a gas-roller-sustained seamless PDMS mold. Microsystem Technologies, 2018, 24(7): 2941–2948
https://doi.org/10.1007/s00542-017-3683-3
121 C R Lee, J G Ok, M Y Jeong. Nanopatterning on the cylindrical surface using an e-beam pre-mapping algorithm. Journal of Micromechanics and Microengineering, 2019, 29(1): 015004
https://doi.org/10.1088/1361-6439/aaea48
122 J J Dumond, H Y Low, H P Lee, J Y H Fuh. Multi-functional silicone stamps for reactive release agent transfer in UV roll-to-roll nanoimprinting. Materials Horizons, 2016, 3(2): 152–160
https://doi.org/10.1039/C5MH00290G
123 T W Odom, J C Love, D B Wolfe, K E Paul, G M Whitesides. Improved pattern transfer in soft lithography using composite stamps. Langmuir, 2002, 18(13): 5314–5320
https://doi.org/10.1021/la020169l
124 S Kim, S Hyun, J Lee, K S Lee, W Lee, J K Kim. Anodized aluminum oxide/polydimethylsiloxane hybrid mold for roll-to-roll nanoimprinting. Advanced Functional Materials, 2018, 28(23): 1800197
https://doi.org/10.1002/adfm.201800197
125 K Ansari, J Kan, A A Bettiol, F Watt. Stamps for nanoimprint lithography fabricated by proton beam writing and nickel electroplating. Journal of Micromechanics and Microengineering, 2006, 16(10): 1967–1974
https://doi.org/10.1088/0960-1317/16/10/008
126 F Liu, K B Tan, P Malar, S K Bikkarolla, J A van Kan. Fabrication of nickel molds using proton beam writing for micro/nano fluidic devices. Microelectronic Engineering, 2013, 102(1): 36–39
https://doi.org/10.1016/j.mee.2012.05.020
127 X Lin, X Dou, X Wang, R T Chen. Nickel electroplating for nanostructure mold fabrication. Journal of Nanoscience and Nanotechnology, 2011, 11(8): 7006–7010
https://doi.org/10.1166/jnn.2011.4236 pmid: 22103113
128 M K Kwak, J G Ok, S H Lee, L J Guo. Visually tolerable tiling (VTT) for making a large-area flexible patterned surface. Materials Horizons, 2015, 2(1): 86–90
https://doi.org/10.1039/C4MH00159A
129 J G Ok, S H Ahn, M K Kwak, L J Guo. Continuous and high-throughput nanopatterning methodologies based on mechanical deformation. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2013, 1(46): 7681–7691
https://doi.org/10.1039/c3tc30908h
130 J G Ok, Y J Shin, H J Park, L J Guo. A step toward next-generation nanoimprint lithography: extending productivity and applicability. Applied Physics A, Materials Science & Processing, 2015, 121(2): 343–356
https://doi.org/10.1007/s00339-015-9229-6
131 J G Ok, H J Park, M K Kwak, C A Pina-Hernandez, S H Ahn, L J Guo. Continuous patterning of nanogratings by nanochannel-guided lithography on liquid resists. Advanced Materials, 2011, 23(38): 4444–4448
https://doi.org/10.1002/adma.201102199 pmid: 21882262
132 S H Ahn, L J Guo. Dynamic nanoinscribing for continuous and seamless metal and polymer nanogratings. Nano Letters, 2009, 9(12): 4392–4397
https://doi.org/10.1021/nl902682d pmid: 19839580
133 D K Oh, D T Nguyen, S Lee, P Ko, G S Heo, C H Yun, T W Ha, H Youn, J G Ok. Facile and scalable fabrication of flexible reattachable ionomer nanopatterns by continuous multidimensional nanoinscribing and low-temperature roll imprinting. ACS Applied Materials & Interfaces, 2019, 11(12): 12070–12076
https://doi.org/10.1021/acsami.8b21915 pmid: 30843383
134 D K Oh, S Lee, S H Lee, W Lee, G Yeon, N Lee, K S Han, S Jung, D H Kim, D Y Lee, S H Lee, H J Park, J G Ok. Tailored nanopatterning by controlled continuous nanoinscribing with tunable shape, depth, and dimension. ACS Nano, 2019, 13(10): 11194–11202
https://doi.org/10.1021/acsnano.9b04221 pmid: 31593432
135 S H Ahn, J G Ok, M K Kwak, K T Lee, J Y Lee, L J Guo. Template-free vibrational indentation patterning (VIP) of micro/nanometer-scale grating structures with real-time pitch and angle tunability. Advanced Functional Materials, 2013, 23(37): 4739–4744
https://doi.org/10.1002/adfm.201300293
136 J G Ok, A Panday, T Lee, L Jay Guo. Continuous fabrication of scalable 2-dimensional (2D) micro- and nanostructures by sequential 1D mechanical patterning processes. Nanoscale, 2014, 6(24): 14636–14642
https://doi.org/10.1039/C4NR05567E pmid: 25363145
137 D Ahiboz, P Manley, C Becker. Adjustable large-area dielectric metasurfaces for near-normal oblique incident excitation. OSA Continuum, 2020, 3(4): 971–981
https://doi.org/10.1364/OSAC.391940
138 J Zhu, Z Wang, S Lin, S Jiang, X Liu, S Guo. Low-cost flexible plasmonic nanobump metasurfaces for label-free sensing of serum tumor marker. Biosensors & Bioelectronics, 2020, 150(1): 111905
https://doi.org/10.1016/j.bios.2019.111905 pmid: 31791874
139 T Das Gupta, L Martin-Monier, W Yan, A Le Bris, T Nguyen-Dang, A G Page, K T Ho, F Yesilköy, H Altug, Y Qu, F Sorin. Self-assembly of nanostructured glass metasurfaces via templated fluid instabilities. Nature Nanotechnology, 2019, 14(4): 320–327
https://doi.org/10.1038/s41565-019-0362-9 pmid: 30742133
140 A V Shneidman, K P Becker, M A Lukas, N Torgerson, C Wang, O Reshef, M J Burek, K Paul, J McLellan, M Lončar. All-polymer integrated optical resonators by roll-to-roll nanoimprint lithography. ACS Photonics, 2018, 5(5): 1839–1845
https://doi.org/10.1021/acsphotonics.8b00022
141 C Zhang, P Yi, L Peng, X Lai, J Chen, M Huang, J Ni. Continuous fabrication of nanostructure arrays for flexible surface enhanced Raman scattering substrate. Scientific Reports, 2017, 7(1): 39814
https://doi.org/10.1038/srep39814 pmid: 28051175
142 V Suresh, L Ding, A B Chew, F L Yap. Fabrication of large-area flexible SERS substrates by nanoimprint lithography. ACS Applied Nano Materials, 2018, 1(2): 886–893
https://doi.org/10.1021/acsanm.7b00295
143 Y Deng, P Yi, L Peng, X Lai, Z Lin. Experimental investigation on the large-area fabrication of micro-pyramid arrays by roll-to-roll hot embossing on PVC film. Journal of Micromechanics and Microengineering, 2014, 24(4): 045023
https://doi.org/10.1088/0960-1317/24/4/045023
144 E Højlund-Nielsen, J Clausen, T Mäkela, L H Thamdrup, M Zalkovskij, T Nielsen, N Li Pira, J Ahopelto, N A Mortensen, A Kristensen. Plasmonic colors: toward mass production of metasurfaces. Advanced Materials Technologies, 2016, 1(7): 1600054
https://doi.org/10.1002/admt.201600054
145 S Murthy, H Pranov, N A Feidenhans’l, J S Madsen, P E Hansen, H C Pedersen, R Taboryski. Plasmonic color metasurfaces fabricated by a high speed roll-to-roll method. Nanoscale, 2017, 9(37): 14280–14287
https://doi.org/10.1039/C7NR05498J pmid: 28914951
146 J G Ok, H S Youn, M K Kwak, K T Lee, Y J Shin, L J Guo, A Greenwald, Y S Liu. Continuous and scalable fabrication of flexible metamaterial films via roll-to-roll nanoimprint process for broadband plasmonic infrared filters. Applied Physics Letters, 2012, 101(22): 223102
https://doi.org/10.1063/1.4767995
147 J S Wi, S Lee, S H Lee, D K Oh, K T Lee, I Park, M K Kwak, J G Ok. Facile three-dimensional nanoarchitecturing of double-bent gold strips on roll-to-roll nanoimprinted transparent nanogratings for flexible and scalable plasmonic sensors. Nanoscale, 2017, 9(4): 1398–1402
https://doi.org/10.1039/C6NR08387K pmid: 28070589
148 J S Wi, D K Oh, M K Kwak, J G Ok. Size-dependent detection sensitivity of spherical particles sitting on a double-bent gold strip array. Optical Materials Express, 2018, 8(7): 1774–1779
https://doi.org/10.1364/OME.8.001774
149 S Jeon, D J Shir, Y S Nam, R Nidetz, M Highland, D G Cahill, J A Rogers, M F Su, I F El-Kady, C G Christodoulou, G R Bogart. Molded transparent photopolymers and phase shift optics for fabricating three dimensional nanostructures. Optics Express, 2007, 15(10): 6358–6366
https://doi.org/10.1364/OE.15.006358 pmid: 19546940
150 J H Choi, C M Oh, J W Jang. Micro- and nano-patterns fabricated by embossed microscale stamp with trenched edges. RSC Advances, 2017, 7(51): 32058–32064
https://doi.org/10.1039/C7RA05262F
151 T Yanagishita, K Murakoshi, T Kondo, H Masuda. Preparation of superhydrophobic surfaces with micro/nano alumina molds. RSC Advances, 2018, 8(64): 36697–36704
https://doi.org/10.1039/C8RA07497F
152 S J Kim, P H Jung, W Kim, H Lee, S H Hong. Generation of highly integrated multiple vivid colours using a three-dimensional broadband perfect absorber. Scientific Reports, 2019, 9(1): 14859
https://doi.org/10.1038/s41598-019-49906-3 pmid: 31619698
153 H E Jeong, J K Lee, H N Kim, S H Moon, K Y Suh. A nontransferring dry adhesive with hierarchical polymer nanohairs. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(14): 5639–5644
https://doi.org/10.1073/pnas.0900323106 pmid: 19304801
154 P Karageorgiev, D Neher, B Schulz, B Stiller, U Pietsch, M Giersig, L Brehmer. From anisotropic photo-fluidity towards nanomanipulation in the optical near-field. Nature Materials, 2005, 4(9): 699–703
https://doi.org/10.1038/nmat1459 pmid: 16113680
155 J Choi, W Cho, Y S Jung, H S Kang, H T Kim. Direct fabrication of micro/nano-patterned surfaces by vertical-directional photofluidization of azobenzene materials. ACS Nano, 2017, 11(2): 1320–1327
https://doi.org/10.1021/acsnano.6b05934 pmid: 28080024
156 J Choi, W Jo, S Y Lee, Y S Jung, S H Kim, H T Kim. Flexible and robust superomniphobic surfaces created by localized photofluidization of azopolymer pillars. ACS Nano, 2017, 11(8): 7821–7828
https://doi.org/10.1021/acsnano.7b01783 pmid: 28715178
157 Z Liu, Q Cui, Z Huang, L J Guo. Transparent colored display enabled by flat glass waveguide and nanoimprinted multilayer gratings. ACS Photonics, 2020, 7(6): 1418–1424
https://doi.org/10.1021/acsphotonics.9b01803
158 R Kothari, M R Beaulieu, N R Hendricks, S Li, J J Watkins. Direct patterning of robust one-dimensional, two-dimensional, and three-dimensional crystalline metal oxide nanostructures using imprint lithography and nanoparticle dispersion inks. Chemistry of Materials, 2017, 29(9): 3908–3918
https://doi.org/10.1021/acs.chemmater.6b05398
159 W Li, Y Zhou, I R Howell, Y Gai, A R Naik, S Li, K R Carter, J J Watkins. Direct imprinting of scalable, high-performance woodpile electrodes for three-dimensional lithium-ion nanobatteries. ACS Applied Materials & Interfaces, 2018, 10(6): 5447–5454
https://doi.org/10.1021/acsami.7b14649 pmid: 29369613
160 D M Liu, Q K Wang, Q Wang. Transfer the multiscale texture of crystalline Si onto thin-film micromorph cell by UV nanoimprint for light trapping. Applied Surface Science, 2018, 439(1): 168–175
https://doi.org/10.1016/j.apsusc.2017.12.223
161 J Choi, Z Jia, S Park. Fabrication of polymeric dual-scale nanoimprint molds using a polymer stencil membrane. Microelectronic Engineering, 2018, 199(1): 101–105
https://doi.org/10.1016/j.mee.2018.07.009 pmid: 31011235
162 K S Han, S H Hong, K I Kim, J Y Cho, K W Choi, H Lee. Fabrication of 3D nano-structures using reverse imprint lithography. Nanotechnology, 2013, 24(4): 045304
https://doi.org/10.1088/0957-4484/24/4/045304 pmid: 23291434
163 Y W Kwon, J Park, T Kim, S H Kang, H Kim, J Shin, S Jeon, S W Hong. Flexible near-field nanopatterning with ultrathin, conformal phase masks on nonplanar substrates for biomimetic hierarchical photonic structures. ACS Nano, 2016, 10(4): 4609–4617
https://doi.org/10.1021/acsnano.6b00816 pmid: 26981613
164 C Wang, J Shao, D Lai, H Tian, X Li. Suspended-template electric-assisted nanoimprinting for hierarchical micro-nanostructures on a fragile substrate. ACS Nano, 2019, 13(9): 10333–10342
https://doi.org/10.1021/acsnano.9b04031 pmid: 31437390
165 A Chandramohan, N V Sibirev, V G Dubrovskii, M C Petty, A J Gallant, D A Zeze. Model for large-area monolayer coverage of polystyrene nanospheres by spin coating. Scientific Reports, 2017, 7(1): 40888
https://doi.org/10.1038/srep40888 pmid: 28102358
166 M Nakagawa, A Nakaya, Y Hoshikawa, S Ito, N Hiroshiba, T Kyotani. Size-dependent filling behavior of UV-curable di(meth)acrylate resins into carbon-coated anodic aluminum oxide pores of around 20 nm. ACS Applied Materials & Interfaces, 2016, 8(44): 30628–30634
https://doi.org/10.1021/acsami.6b10561 pmid: 27767296
167 F Hua, Y G Sun, A Gaur, M A Meitl, L Bilhaut, L Rotkina, J F Wang, P Geil, M Shim, J A Rogers, A Shim. Polymer imprint lithography with molecular-scale resolution. Nano Letters, 2004, 4(12): 2467–2471
https://doi.org/10.1021/nl048355u
168 W Yim, S J Park, S Y Han, Y H Park, S W Lee, H J Park, Y H Ahn, S Lee, J Y Park. Carbon nanotubes as etching masks for the formation of polymer nanostructures. ACS Applied Materials & Interfaces, 2017, 9(50): 44053–44059
https://doi.org/10.1021/acsami.7b18035 pmid: 29188997
169 S Pi, P Lin, Q Xia. Fabrication of sub-10 nm metal nanowire arrays with sub-1 nm critical dimension control. Nanotechnology, 2016, 27(46): 464004
https://doi.org/10.1088/0957-4484/27/46/464004 pmid: 27749277
170 J Y Woo, S Jo, J H Oh, J T Kim, C S Han. Facile and precise fabrication of 10-nm nanostructures on soft and hard substrates. Applied Surface Science, 2019, 484(1): 317–325
https://doi.org/10.1016/j.apsusc.2019.04.035
171 S H Lim, M S Saifullah, H Hussain, W W Loh, H Y Low. Direct imprinting of high resolution TiO2 nanostructures. Nanotechnology, 2010, 21(28): 285303
https://doi.org/10.1088/0957-4484/21/28/285303 pmid: 20562489
172 E Menumerov, S D Golze, R A Hughes, S Neretina. Arrays of highly complex noble metal nanostructures using nanoimprint lithography in combination with liquid-phase epitaxy. Nanoscale, 2018, 10(38): 18186–18194
https://doi.org/10.1039/C8NR06874G pmid: 30246850
173 C Pina-Hernandez, P F Fu, L J Guo. Ultrasmall structure fabrication via a facile size modification of nanoimprinted functional silsesquioxane features. ACS Nano, 2011, 5(2): 923–931
https://doi.org/10.1021/nn102127z pmid: 21210695
174 Y H Yao, Y F Wang, H Liu, Y R Li, B X Song, W Wu. Line width tuning and smoothening for periodical grating fabrication in nanoimprint lithography. Applied Physics A, Materials Science & Processing, 2015, 121(2): 399–403
https://doi.org/10.1007/s00339-015-9278-x
175 S S Wang, R Magnusson. Theory and applications of guided-mode resonance filters. Applied Optics, 1993, 32(14): 2606–2613
https://doi.org/10.1364/AO.32.002606 pmid: 20820422
176 Z Liu. One-step fabrication of crystalline metal nanostructures by direct nanoimprinting below melting temperatures. Nature Communications, 2017, 8(1): 14910
https://doi.org/10.1038/ncomms14910 pmid: 28348374
177 S Bhadauriya, X Wang, P Pitliya, J Zhang, D Raghavan, M R Bockstaller, C M Stafford, J F Douglas, A Karim. Tuning the relaxation of nanopatterned polymer films with polymer-grafted nanoparticles: observation of entropy-enthalpy compensation. Nano Letters, 2018, 18(12): 7441–7447
https://doi.org/10.1021/acs.nanolett.8b02514 pmid: 30398875
178 L Liu, Q Zhang, Y S Lu, W Du, B Li, Y S Cui, C S Yuan, P Zhan, H X Ge, Z L Wang, Y F Chen. A high-performance and low cost SERS substrate of plasmonic nanopillars on plastic film fabricated by nanoimprint lithography with AAO template. AIP Advances, 2017, 7(6): 065205
https://doi.org/10.1063/1.4985270
179 Y Jung, I Hwang, J Yu, J Lee, J H Choi, J H Jeong, J Y Jung, J Lee. Fano metamaterials on nanopedestals for plasmon-enhanced infrared spectroscopy. Scientific Reports, 2019, 9(1): 7834
https://doi.org/10.1038/s41598-019-44396-9 pmid: 31127173
180 Y H Yao, W Wu. All-dielectric heterogeneous metasurface as an efficient ultra-broadband reflector. Advanced Optical Materials, 2017, 5(14): 1700090
https://doi.org/10.1002/adom.201700090
181 H Hemmati, R Magnusson. Resonant dual-grating metamembranes supporting spectrally narrow bound states in the continuum. Advanced Optical Materials, 2019, 7(20): 1900754
https://doi.org/10.1002/adom.201900754
182 C Zhang, H Subbaraman, Q Li, Z Pan, J G Ok, T Ling, C J Chung, X Zhang, X Lin, R T Chen, L J Guo. Printed photonic elements: nanoimprinting and beyond. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2016, 4(23): 5133–5153
https://doi.org/10.1039/C6TC01237J
183 K T Lee, J Y Jang, S J Park, C G Ji, S M Yang, L J Guo, H J Park. Angle-insensitive and CMOS-compatible subwavelength color printing. Advanced Optical Materials, 2016, 4(11): 1696–1702
https://doi.org/10.1002/adom.201600287
184 H Liu, H Yang, Y R Li, B X Song, Y F Wang, Z R Liu, L Peng, H Lim, J Yoon, W Wu. Switchable all-dielectric metasurfaces for full-color reflective display. Advanced Optical Materials, 2019, 7(8): 1801639
https://doi.org/10.1002/adom.201801639
185 W J Joo, J Kyoung, M Esfandyarpour, S H Lee, H Koo, S Song, Y N Kwon, S H Song, J C Bae, A Jo, M J Kwon, S H Han, S H Kim, S Hwang, M L Brongersma. Metasurface-driven OLED displays beyond 10000 pixels per inch. Science, 2020, 370(6515): 459–463
https://doi.org/10.1126/science.abc8530 pmid: 33093108
186 G Yoon, K Kim, S U Kim, S Han, H Lee, J Rho. Printable nanocomposite metalens for high-contrast near-infrared imaging. ACS Nano, 2021, 15(1): 698–706
https://doi.org/10.1021/acsnano.0c06968 pmid: 33385188
187 S Checcucci, T Bottein, M Gurioli, L Favre, D Grosso, M Abbarchi. Multifunctional metasurfaces based on direct nanoimprint of titania sol-gel coatings. Advanced Optical Materials, 2019, 7(10): 1801406
https://doi.org/10.1002/adom.201801406
188 K Kim, G Yoon, S Baek, J Rho, H Lee. Facile nanocasting of dielectric metasurfaces with sub-100 nm resolution. ACS Applied Materials & Interfaces, 2019, 11(29): 26109–26115
https://doi.org/10.1021/acsami.9b07774 pmid: 31262166
189 G Yoon, K Kim, D Huh, H Lee, J Rho. Single-step manufacturing of hierarchical dielectric metalens in the visible. Nature Communications, 2020, 11(1): 2268
https://doi.org/10.1038/s41467-020-16136-5 pmid: 32385266
190 K K Gopalan, B Paulillo, D M A Mackenzie, D Rodrigo, N Bareza, P R Whelan, A Shivayogimath, V Pruneri. Scalable and tunable periodic graphene nanohole arrays for mid-infrared plasmonics. Nano Letters, 2018, 18(9): 5913–5918
https://doi.org/10.1021/acs.nanolett.8b02613 pmid: 30114919
191 Z J Zhao, M Lee, H Kang, S Hwang, S Jeon, N Park, S H Park, J H Jeong. Eight inch wafer-scale flexible polarization-dependent color filters with Ag-TiO2 composite nanowires. ACS Applied Materials & Interfaces, 2018, 10(10): 9188–9196
https://doi.org/10.1021/acsami.8b02128 pmid: 29460628
192 L Driencourt, F Federspiel, D Kazazis, L T Tseng, R Frantz, Y Ekinci, R Ferrini, B Gallinet. Electrically tunable multicolored filter using birefringent plasmonic resonators and liquid crystals. ACS Photonics, 2020, 7(2): 444–453
https://doi.org/10.1021/acsphotonics.9b01404
193 Y J Shin, C Pina-Hernandez, Y K Wu, J G Ok, L J Guo. Facile route of flexible wire grid polarizer fabrication by angled-evaporations of aluminum on two sidewalls of an imprinted nanograting. Nanotechnology, 2012, 23(34): 344018
https://doi.org/10.1088/0957-4484/23/34/344018 pmid: 22885707
194 C Matricardi, J L Garcia-Pomar, P Molet, L A Perez, M I Alonso, M Campoy-Quiles, A Mihi. High-throughput nanofabrication of metasurfaces with polarization-dependent response. Advanced Optical Materials, 2020, 8(20): 2000786
https://doi.org/10.1002/adom.202000786
195 G Yoon, K Kim, S U Kim, S Han, H Lee, J Rho. Printable nanocomposite metalens for high-contrast near-infrared imaging. ACS Nano, 2021, 15(1): 698–706
https://doi.org/10.1021/acsnano.0c06968 pmid: 33385188
196 Y Yang, G Yoon, S Park, S D Namgung, T Badloe, K T Nam, J Rho. Revealing structural disorder in hydrogenated amorphous silicon for a low-loss photonic platform at visible frequencies. Advanced Materials, 2021, 33(9): e2005893
https://doi.org/doi:10.1002/adma.202005893 pmid: 33511758
197 D K Oh, H Jeong, J Kim, Y Kim, I Kim, J G Ok, J Rho. Top-down nanofabrication approaches toward single-digit-nanometer scale structures. Journal of Mechanical Science and Technology, 20201, 35(3): 837–859
https://doi.org/doi:10.1007/s12206-021-0243-7
198 T Stolt , J Kim, S Héron, A Vesala, Y Yang, J Mun, M Kim, M J Huttunen, R Czaplicki, M Kauranen, J Rho, P Genevet. Backward phase-matched second-harmonic generation from stacked metasurfaces. Physical Review Letters, 2021, 126(3): 033901
https://doi.org/10.1103/PhysRevLett.126.033901 pmid: 33543948
199 D Lee, M Go, M Kim, J Jang, C Choi, J K Kim, J Rho. Multiple-patterning colloidal lithography-implemented scalable manufacturing of heat-tolerant titanium nitride broadband absorbers in the visible to near-infrared. Microsystems & Nanoengineering, 2021, 7(1): 14
https://doi.org/doi:10.1038/s41378-020-00237-8
200 I Kim, M A Ansari, M Q Mehmood, W S Kim, J Jang, M Zubair, Y K Kim, J Rho. Stimuli-responsive dynamic metaholographic displays with designer liquid crystal modulators. Advanced Materials, 2020, 32(50): e2004664
https://doi.org/10.1002/adma.202004664 pmid: 33169455
201 Y Chen, B Ai, Z J Wong. Soft optical metamaterials. Nano Convergence, 2020, 7(1): 18
https://doi.org/doi:10.1186/s40580-020-00226-7 pmid: 32451734
202 M A Naveed, M A Ansari, I Kim, T Badloe, J Kim, D K Oh, K Riaz, T Tauqeer, U Younis, M Saleem, M S Anwar, M Zubair, M Q Mehmood, J Rho. Optical spin-symmetry breaking for high-efficiency directional helicity-multiplexed metaholograms. Microsystems & Nanoengineering, 2021, 7(1): 5
https://doi.org/10.1038/s41378-020-00226-x
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed