Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2021, Vol. 14 Issue (2) : 154-169    https://doi.org/10.1007/s12200-021-1125-4
REVIEW ARTICLE
Magnetically controllable metasurface and its application
Yu BI1, Lingling HUANG1(), Xiaowei LI2, Yongtian WANG1
1. Key Laboratory of Photoelectronic Imaging Technology and System, Ministry of Education; School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
2. Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
 Download: PDF(2046 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The dynamic control of the metasurface opens up a vital technological approach for the development of multifunctional integrated optical devices. The magnetic field manipulation has the advantages of sub-nanosecond ultra-fast response, non-contact, and continuous adjustment. Thus, the magnetically controllable metasurface has attracted significant attention in recent years. This study introduces the basic principles of the Faraday and Kerr effect of magneto-optical (MO) materials. It classifies the typical MO materials according to their properties. It also summarizes the physical mechanism of different MO metasurfaces that combine the MO effect with plasmonic or dielectric resonance. Besides, their applications in the nonreciprocal device and MO sensing are demonstrated. The future perspectives and challenges of the research on MO metasurfaces are discussed.

Keywords magneto-optical (MO) effect      MO metasurfaces      magnetoplasmonic      nonreciprocal device      MO sensing     
Corresponding Author(s): Lingling HUANG   
Just Accepted Date: 26 January 2021   Online First Date: 12 March 2021    Issue Date: 14 July 2021
 Cite this article:   
Yu BI,Lingling HUANG,Xiaowei LI, et al. Magnetically controllable metasurface and its application[J]. Front. Optoelectron., 2021, 14(2): 154-169.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-021-1125-4
https://academic.hep.com.cn/foe/EN/Y2021/V14/I2/154
Fig.1  Schematic of the Faraday effect
Fig.2  Schematic of MOKE
Fig.3  Classification diagram of typical MO materials
Fig.4  (a) Kerr rotation of nickel nanowire array [24]. (b) Kerr sign reversal of nickel nanodisk [25]
Fig.5  (a) Enhanced and tunable MO activity of the anisotropic magnetoplasmonic crystal [26]. (b) Tunable Fano resonance and MO response in Ni nanopillars array [27]
Fig.6  (a) Sketch of the magnetoplasmonic structure of PMMA/Au/Co/Au. (b) SPR wave vector modulated by the magnetic field [49]
Fig.7  (a) Enhanced MO response of the Ni-Si MO metasurface [51]. (b) Enhanced LMOKE of the anisotropic NiFe/Si magnetoplasmonic crystals [53]
Fig.8  (a) Transmission spectrum and MO effect of the Au nanohole array/Bi:YIG film [58]. (b) Tunable Faraday enhancement of Au grating/BIG film by changing the grating period [59]
Fig.9  (a) Structure of all-dielectric MO metasurface. (b) Transmittance spectra and Faraday rotation for the nonoverlapping and overlapping cases of the resonances [72]
Fig.10  Schematic of monolithically integrated MO isolator [89]
Fig.11  (a) 1D grating/MO layer for refractive index sensing [93]. (b) Au/Co/Au magnetoplasmonic crystal for MOSPR sensor [94]
Fig.12  MOSPR sensor based on Ni nanodisk [100]
Fig.13  (a) Magnetic control of the chiral response of Au-Au-Ni trimer [104]. (b) Switchable optical chirality in MO metasurfaces [105]
1 L Huang, C Chang, B Zeng, J Nogan, S N Luo, A J Taylor, A K Azad, H T Chen. Bilayer metasurfaces for dual- and broadband optical antireflection. ACS Photonics, 2017, 4(9): 2111–2116
https://doi.org/10.1021/acsphotonics.7b00471
2 N Yu, P Genevet, M A Kats, F Aieta, J P Tetienne, F Capasso, Z Gaburro. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 2011, 334(6054): 333–337
https://doi.org/10.1126/science.1210713 pmid: 21885733
3 Z Liu, Z Li, Z Liu, H Cheng, W Liu, C Tang, C Gu, J Li, H T Chen, S Chen, J Tian. Single-layer plasmonic metasurface half-wave plates with wavelength-independent polarization conversion angle. ACS Photonics, 2017, 4(8): 2061–2069
https://doi.org/10.1021/acsphotonics.7b00491
4 M Kim, A M Wong, G V Eleftheriades. Optical huygens’ metasurfaces with independent control of the magnitude and phase of the local reflection coefficients. Physical Review X, 2014, 4(4): 041042
https://doi.org/10.1103/PhysRevX.4.041042
5 G Y Lee, G Yoon, S Y Lee, H Yun, J Cho, K Lee, H Kim, J Rho, B Lee. Complete amplitude and phase control of light using broadband holographic metasurfaces. Nanoscale, 2018, 10(9): 4237–4245
https://doi.org/10.1039/C7NR07154J pmid: 29350732
6 J Li, S Chen, H Yang, J Li, P Yu, H Cheng, C Gu, H T Chen, J Tian. Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces. Advanced Functional Materials, 2015, 25(5): 704–710
https://doi.org/10.1002/adfm.201403669
7 H S Ee, R Agarwal. Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano Letters, 2016, 16(4): 2818–2823
https://doi.org/10.1021/acs.nanolett.6b00618 pmid: 26986191
8 T Cao, L Zhang, R E Simpson, C Wei, M J Cryan. Strongly tunable circular dichroism in gammadion chiral phase-change metamaterials. Optics Express, 2013, 21(23): 27841–27851
https://doi.org/10.1364/OE.21.027841 pmid: 24514301
9 T Driscoll, S Palit, M M Qazilbash, M Brehm, F Keilmann, B G Chae, S J Yun, H T Kim, S Y Cho, N M Jokerst, D R Smith, D N Basov. Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide. Applied Physics Letters, 2008, 93(2): 024101
https://doi.org/10.1063/1.2956675
10 R Singh, A K Azad, Q X Jia, A J Taylor, H T Chen. Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates. Optics Letters, 2011, 36(7): 1230–1232
https://doi.org/10.1364/OL.36.001230 pmid: 21479039
11 M D Goldflam, M K Liu, B C Chapler, H T Stinson, A J Sternbach, A S McLeod, J D Zhang, K Geng, M Royal, B J Kim, R D Averitt, N M Jokerst, D R Smith, H T Kim, D N Basov. Voltage switching of a VO2 memory metasurface using ionic gel. Applied Physics Letters, 2014, 105(4): 041117
https://doi.org/10.1063/1.4891765
12 M X Ren, W Wu, W Cai, B Pi, X Z Zhang, J J Xu. Reconfigurable metasurfaces that enable light polarization control by light. Light, Science & Applications, 2017, 6(6): e16254
https://doi.org/10.1038/lsa.2016.254 pmid: 30167257
13 H Yang, T Yu, Q Wang, M Lei. Wave manipulation with magnetically tunable metasurfaces. Scientific Reports, 2017, 7(1): 5441
https://doi.org/10.1038/s41598-017-05625-1 pmid: 28710490
14 G Armelles, A Cebollada, H Y Feng, A García-Martín, D Meneses-Rodríguez, J Zhao, H Giessen. Interaction effects between magnetic and chiral building blocks: a new route for tunable magneto-chiral plasmonic structures. ACS Photonics, 2015, 2(9): 1272–1277
https://doi.org/10.1021/acsphotonics.5b00158
15 D O Ignatyeva, G A Knyazev, P O Kapralov, G Dietler, S K Sekatskii, V I Belotelov. Magneto-optical plasmonic heterostructure with ultranarrow resonance for sensing applications. Scientific Reports, 2016, 6(1): 28077
https://doi.org/10.1038/srep28077 pmid: 27306301
16 G A Knyazev, P O Kapralov, N A Gusev, A N Kalish, P M Vetoshko, S A Dagesyan, A N Shaposhnikov, A R Prokopov, V N Berzhansky, A K Zvezdin, V I Belotelov. Magnetoplasmonic crystals for highly sensitive magnetometry. ACS Photonics, 2018, 5(12): 4951–4959
https://doi.org/10.1021/acsphotonics.8b01135
17 F Cheng, C Wang, Z Su, X Wang, Z Cai, N X Sun, Y Liu. All-optical manipulation of magnetization in ferromagnetic thin films enhanced by plasmonic resonances. Nano Letters, 2020, 20(9): 6437–6443
https://doi.org/10.1021/acs.nanolett.0c02089 pmid: 32787165
18 K S Ho, S J Im, J S Pae, C S Ri, Y H Han, J Herrmann. Switchable plasmonic routers controlled by external magnetic fields by using magneto-plasmonic waveguides. Scientific Reports, 2018, 8(1): 10584
https://doi.org/10.1038/s41598-018-28567-8 pmid: 30002560
19 T Wehlus, T Körner, S Leitenmeier, A Heinrich, B Stritzker. Magneto-optical garnets for integrated optoelectronic devices. Physica Status Solidi, 2011, 208(2): 252–263
https://doi.org/10.1002/pssa.201026672
20 H Yan, Z Li, X Li, W Zhu, P Avouris, F Xia. Infrared spectroscopy of tunable Dirac terahertz magneto-plasmons in graphene. Nano Letters, 2012, 12(7): 3766–3771
https://doi.org/10.1021/nl3016335 pmid: 22690695
21 P Wachter. Europium chalcogenides: EuO, EuS, EuSe and EuTe. Handbook on the Physics & Chemistry of Rare Earths, 1979, 2: 507–574
https://doi.org/10.1016/S0168-1273(79)02010-9
22 B Huang, G Clark, E Navarro-Moratalla, D R Klein, R Cheng, K L Seyler, D Zhong, E Schmidgall, M A McGuire, D H Cobden, W Yao, D Xiao, P Jarillo-Herrero, X Xu. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546(7657): 270–273
https://doi.org/10.1038/nature22391 pmid: 28593970
23 P M Hui, D Stroud. Theory of Faraday rotation by dilute suspensions of small particles. Applied Physics Letters, 1987, 50(15): 950–952
https://doi.org/10.1063/1.97996
24 S Melle, J L Menéndez, G Armelles, D Navas, M Vázquez, K Nielsch, R B Wehrspohn, U Gösele. Magneto-optical properties of nickel nanowire arrays. Applied Physics Letters, 2003, 83(22): 4547–4549
https://doi.org/10.1063/1.1630840
25 V Bonanni, S Bonetti, T Pakizeh, Z Pirzadeh, J Chen, J Nogués, P Vavassori, R Hillenbrand, J Åkerman, A Dmitriev. Designer magnetoplasmonics with nickel nanoferromagnets. Nano Letters, 2011, 11(12): 5333–5338
https://doi.org/10.1021/nl2028443 pmid: 22029387
26 N Maccaferri, L Bergamini, M Pancaldi, M K Schmidt, M Kataja, S Dijken, N Zabala, J Aizpurua, P Vavassori. Anisotropic nanoantenna-based magnetoplasmonic crystals for highly enhanced and tunable magneto-optical activity. Nano Letters, 2016, 16(4): 2533–2542
https://doi.org/10.1021/acs.nanolett.6b00084 pmid: 26967047
27 L Chen, J Gao, W Xia, S Zhang, S Tang, W Zhang, D Li, X Wu, Y Du. Tunable Fano resonance and magneto-optical response in magnetoplasmonic structure fabricated by pure ferromagnetic metals. Physical Review B, 2016, 93(21): 214411
https://doi.org/10.1103/PhysRevB.93.214411
28 J B González-Díaz, A Garcia-Martin, G Armelles, D Navas, M Vázquez, K Nielsch, R B Wehrspohn, U Gösele. Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays. Advanced Materials, 2007, 19(18): 2643–2647
https://doi.org/10.1002/adma.200602938
29 J B González-Díaz, A García-Martín, G A Reig. Unusual magneto-optical behavior induced by local dielectric variations under localized surface plasmon excitations. Nanoscale Research Letters, 2011, 6(1): 408
https://doi.org/10.1186/1556-276X-6-408 pmid: 21711939
30 G Ctistis, E Papaioannou, P Patoka, J Gutek, P Fumagalli, M Giersig. Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films. Nano Letters, 2009, 9(1): 1–6
https://doi.org/10.1021/nl801811t pmid: 19072720
31 M Rollinger, P Thielen, E Melander, E Östman, V Kapaklis, B Obry, M Cinchetti, A García-Martín, M Aeschlimann, E T Papaioannou. Light localization and magneto-optic enhancement in Ni antidot arrays. Nano Letters, 2016, 16(4): 2432–2438
https://doi.org/10.1021/acs.nanolett.5b05279 pmid: 27018661
32 J Chen, P Albella, Z Pirzadeh, P Alonso-González, F Huth, S Bonetti, V Bonanni, J Åkerman, J Nogués, P Vavassori, A Dmitriev, J Aizpurua, R Hillenbrand. Plasmonic nickel nanoantennas. Small, 2011, 7(16): 2341–2347
https://doi.org/10.1002/smll.201100640 pmid: 21678553
33 M Kataja, T K Hakala, A Julku, M J Huttunen, S van Dijken, P Törmä. Surface lattice resonances and magneto-optical response in magnetic nanoparticle arrays. Nature Communications, 2015, 6(1): 7072
https://doi.org/10.1038/ncomms8072 pmid: 25947368
34 Y Li, Q Zhang, A V Nurmikko, S Sun. Enhanced magnetooptical response in dumbbell-like Ag-CoFe2O4 nanoparticle pairs. Nano Letters, 2005, 5(9): 1689–1692
https://doi.org/10.1021/nl050814j pmid: 16159206
35 J B González-Díaz, A García-Martín, J M García-Martín, A Cebollada, G Armelles, B Sepúlveda, Y Alaverdyan, M Käll. Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity. Small, 2008, 4(2): 202–205
https://doi.org/10.1002/smll.200700594 pmid: 18196506
36 L Wang, K Yang, C Clavero, A J Nelson, K J Carroll, E E Carpenter, R A. Lukaszew Localized surface plasmon resonance enhanced magneto-optical activity in core-shell Fe-Ag nanoparticles. Journal of Applied Physics, 2010, 107(9): 09B303
https://doi.org/10.1063/1.3355905
37 L Wang, C Clavero, Z Huba, K J Carroll, E E Carpenter, D Gu, R A Lukaszew. Plasmonics and enhanced magneto-optics in core-shell Co-Ag nanoparticles. Nano Letters, 2011, 11(3): 1237–1240
https://doi.org/10.1021/nl1042243 pmid: 21319843
38 G X Du, T Mori, M Suzuki, S Saito, H Fukuda, M. TakahashiMagneto-optical effects in nanosandwich array with plasmonic structure of Au/[Co/Pt]n/Au. Journal of Applied Physics, 2010, 107(9): 09A928
https://doi.org/10.1063/1.3368110
39 G Armelles, J B González-Díaz , A García-Martín, J M García-Martín, A Cebollada, M U González, S Acimovic, J Cesario, R Quidant, G Badenes. Localized surface plasmon resonance effects on the magneto-optical activity of continuous Au/Co/Au trilayers. Optics Express, 2008, 16(20): 16104–16112
https://doi.org/10.1364/OE.16.016104 pmid: 18825249
40 G Armelles, A Cebollada, A García-Martín, J M García-Martín, M U González, J B González-Díaz, E Ferreiro-Vila, J F Torrado. Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties. Journal of Optics A, Pure and Applied Optics, 2009, 11(11): 114023
https://doi.org/10.1088/1464-4258/11/11/114023
41 G X Du, T Mori, M Suzuki, S Saito, H Fukuda, M Takahashi. Evidence of localized surface plasmon enhanced magneto-optical effect in nanodisk array. Applied Physics Letters, 2010, 96(8): 081915
https://doi.org/10.1063/1.3334726
42 G X Du, T Mori, S Saito, M Takahashi. Shape-enhanced magneto-optical activity: degree of freedom for active plasmonics. Physical Review B: Condensed Matter, 2010, 82(16): 161403
https://doi.org/10.1103/PhysRevB.82.161403
43 J C Banthí, D Meneses-Rodríguez, F García, M U González, A García-Martín, A Cebollada, G Armelles. High magneto-optical activity and low optical losses in metal-dielectric Au/Co/Au-SiO2 magnetoplasmonic nanodisks. Advanced Materials, 2012, 24(10): OP36–OP41
https://doi.org/10.1002/adma.201103634 pmid: 22213149
44 J B González-Díaz, A García-Martín, G Armelles, J M García-Martín, C Clavero, A Cebollada, R A Lukaszew, J R Skuza, D P Kumah, R Clarke. Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures. Physical Review B, 2007, 76(15): 153402
https://doi.org/10.1103/PhysRevB.76.153402
45 V V Temnov, G Armelles, U Woggon, D Guzatov, A Cebollada, A Garcia-Martin, J M Garcia-Martin, T Thomay, A Leitenstorfer, R Bratschitsch. Active magneto-plasmonics in hybrid metal-ferromagnet structures. Nature Photonics, 2010, 4(2): 107–111
https://doi.org/10.1038/nphoton.2009.265
46 C Clavero, K Yang, J R Skuza, R A Lukaszew. Magnetic-field modulation of surface plasmon polaritons on gratings. Optics Letters, 2010, 35(10): 1557–1559
https://doi.org/10.1364/OL.35.001557 pmid: 20479807
47 D Martín-Becerra, V V Temnov, T Thomay, A Leitenstorfer, R Bratschitsch, G Armelles, A García-Martín, M U González. Spectral dependence of the magnetic modulation of surface plasmon polaritons in noble/ferromagnetic/noble metal films. Physical Review B, 2012, 86(3): 035118
https://doi.org/10.1103/PhysRevB.86.035118
48 I Jung, H J Jang, S Han, J A I Acapulco Jr, S Park. Magnetic modulation of surface plasmon resonance by tailoring magnetically responsive metallic block in multisegment nanorods. Chemistry of Materials, 2015, 27(24): 8433–8441
https://doi.org/10.1021/acs.chemmater.5b04016
49 D Martín-Becerra, J B González-Díaz, V V Temnov, A Cebollada, G Armelles, T Thomay, A Leitenstorfer, R Bratschitsch, A García-Martín, M U González. Enhancement of the magnetic modulation of surface plasmon polaritons in Au/Co/Au films. Applied Physics Letters, 2010, 97(18): 183114
https://doi.org/10.1063/1.3512874
50 Y H Lu, M H Cho, J B Kim, G J Lee, Y P Lee, J Y Rhee. Magneto-optical enhancement through gyrotropic gratings. Optics Express, 2008, 16(8): 5378–5384
https://doi.org/10.1364/OE.16.005378 pmid: 18542640
51 M G Barsukova, A S Shorokhov, A I Musorin, D N Neshev, Y S Kivshar, A A Fedyanin. Magneto-optical response enhanced by Mie resonances in nanoantennas. ACS Photonics, 2017, 4(10): 2390–2395
https://doi.org/10.1021/acsphotonics.7b00783
52 M G Barsukova, A I Musorin, A S Shorokhov, A A Fedyanin. Enhanced magneto-optical effects in hybrid Ni-Si metasurfaces. APL Photonics, 2019, 4(1): 016102
https://doi.org/10.1063/1.5066307
53 N Maccaferri, X Inchausti, A García-Martín, J C Cuevas, D Tripathy, A O Adeyeye, P Vavassori. Resonant enhancement of magneto-optical activity induced by surface plasmon polariton modes coupling in 2D magnetoplasmonic crystals. ACS Photonics, 2015, 2(12): 1769–1779
https://doi.org/10.1021/acsphotonics.5b00490
54 V I Belotelov, D A Bykov, L L Doskolovich, A N Kalish, V A Kotov, A K Zvezdin. Giant magneto-optical orientational effect in plasmonic heterostructures. Optics Letters, 2009, 34(4): 398–400
https://doi.org/10.1364/OL.34.000398 pmid: 19373320
55 V I Belotelov, L E Kreilkamp, I A Akimov, A N Kalish, D A Bykov, S Kasture, V J Yallapragada, A Venu Gopal, A M Grishin, S I Khartsev, M Nur-E-Alam, M Vasiliev, L L Doskolovich, D R Yakovlev, K Alameh, A K Zvezdin, M Bayer. Plasmon-mediated magneto-optical transparency. Nature Communications, 2013, 4(1): 2128
https://doi.org/10.1038/ncomms3128 pmid: 23839481
56 O Borovkova, A Kalish, V Belotelov. Transverse magneto-optical Kerr effect in active magneto-plasmonic structures. Optics Letters, 2016, 41(19): 4593–4596
https://doi.org/10.1364/OL.41.004593 pmid: 27749889
57 A N Kalish, R S Komarov, M A Kozhaev, V G Achanta, S A Dagesyan, A N Shaposhnikov, A R Prokopov, V N Berzhansky, A K Zvezdin, V I Belotelov. Magnetoplasmonic quasicrystals: an approach for multiband magneto-optical response. Optica, 2018, 5(5): 617
https://doi.org/10.1364/OPTICA.5.000617
58 V I Belotelov, L L Doskolovich, A K Zvezdin. Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems. Physical Review Letters, 2007, 98(7): 077401
https://doi.org/10.1103/PhysRevLett.98.077401 pmid: 17359058
59 J Y Chin, T Steinle, T Wehlus, D Dregely, T Weiss, V I Belotelov, B Stritzker, H Giessen. Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation. Nature Communications, 2013, 4(1): 1599
https://doi.org/10.1038/ncomms2609 pmid: 23511464
60 L E Kreilkamp, V I Belotelov, J Y Chin, S Neutzner, D Dregely, T Wehlus, I A Akimov, M Bayer, B Stritzker, H Giessen. Waveguide-plasmon polaritons enhance transverse magneto-optical Kerr effect. Physical Review X, 2013, 3(4): 041019
https://doi.org/10.1103/PhysRevX.3.041019
61 V I Belotelov, L L Doskolovich, V A Kotov, E A Bezus, D A Bykov, A K Zvezdin. Magnetooptical effects in the metal-dielectric gratings. Optics Communications, 2007, 278(1): 104–109
https://doi.org/10.1016/j.optcom.2007.05.064
62 V I Belotelov, D A Bykov, L L Doskolovich, A N Kalish, A K Zvezdin. Extraordinary transmission and giant magneto-optical transverse Kerr effect in plasmonic nanostructured films. Journal of the Optical Society of America B, Optical Physics, 2009, 26(8): 1594–1598
https://doi.org/10.1364/JOSAB.26.001594
63 L Halagačka, M Vanwolleghem, K Postava, B Dagens, J Pištora. Coupled mode enhanced giant magnetoplasmonics transverse Kerr effect. Optics Express, 2013, 21(19): 21741–21755
https://doi.org/10.1364/OE.21.021741 pmid: 24104068
64 S A Dyakov, I M Fradkin, N A Gippius, L Klompmaker, F Spitzer, E Yalcin, I A Akimov, M Bayer, D A Yavsin, S I Pavlov, A B Pevtsov, S Y Verbin, S G Tikhodeev. Wide band enhancement of transverse magneto-optic Kerr effect in magnetite-based plasmonic crystals. Physical Review B: Condensed Matter, 2019, 100(21): 214411
https://doi.org/10.1103/PhysRevB.100.214411
65 Y Wang, Y Qin, Z Zhang. Extraordinary optical transmission property of X-shaped plasmonic nanohole arrays. Plasmonics, 2014, 9(2): 203–207
https://doi.org/10.1007/s11468-013-9613-z
66 D Li, C Lei, L Chen, Z Tang, S Zhang, S Tang, Y Du. Waveguide plasmon resonance induced enhancement of the magneto-optics in a Ag/Bi:YIG bilayer structure. Journal of the Optical Society of America B, Optical Physics, 2015, 32(9): 2003
https://doi.org/10.1364/JOSAB.32.002003
67 A V Chesnitskiy, A E Gayduk, V Y Prinz. Transverse magneto-optical Kerr effect in strongly coupled plasmon gratings. Plasmonics, 2018, 13(3): 885–889
https://doi.org/10.1007/s11468-017-0584-3
68 E Gamet, B Varghese, I Verrier, F Royer. Enhancement of magneto-optical effects by a single 1D all dielectric resonant grating. Journal of Physics D, Applied Physics, 2017, 50(49): 495105
https://doi.org/10.1088/1361-6463/aa949e
69 M Levy, O V Borovkova, C Sheidler, B Blasiola, D Karki, F Jomard, M A Kozhaev, E Popova, N Keller, V I Belotelov. Faraday rotation in iron garnet films beyond elemental substitutions. Optica, 2019, 6(5): 642
https://doi.org/10.1364/OPTICA.6.000642
70 F Royer, B Varghese, E Gamet, S Neveu, Y Jourlin, D Jamon. Enhancement of both Faraday and Kerr effects with an all-dielectric grating based on a magneto-optical nanocomposite material. ACS Omega, 2020, 5(6): 2886–2892
https://doi.org/10.1021/acsomega.9b03728 pmid: 32095710
71 E Moncada-Villa, J R Mejía-Salazar. High-refractive-index materials for giant enhancement of the transverse magneto-optical Kerr effect. Sensors (Basel), 2020, 20(4): 952
https://doi.org/10.3390/s20040952 pmid: 32053897
72 A Christofi, Y Kawaguchi, A Alù, A B Khanikaev. Giant enhancement of Faraday rotation due to electromagnetically induced transparency in all-dielectric magneto-optical metasurfaces. Optics Letters, 2018, 43(8): 1838–1841
https://doi.org/10.1364/OL.43.001838 pmid: 29652378
73 D O Ignatyeva, D Karki, A A Voronov, M A Kozhaev, D M Krichevsky, A I Chernov, M Levy, V I Belotelov. All-dielectric magnetic metasurface for advanced light control in dual polarizations combined with high-Q resonances. Nature Communications, 2020, 11(1): 5487
https://doi.org/10.1038/s41467-020-19310-x pmid: 33127921
74 L Fan, J Wang, L T Varghese, H Shen, B Niu, Y Xuan, A M Weiner, M Qi. An all-silicon passive optical diode. Science, 2012, 335(6067): 447–450
https://doi.org/10.1126/science.1214383 pmid: 22194410
75 Y Shi, Z Yu, S Fan. Limitations of nonlinear optical isolators due to dynamic reciprocity. Nature Photonics, 2015, 9(6): 388–392
https://doi.org/10.1038/nphoton.2015.79
76 B Peng, Ş K Özdemir, F Lei, F Monifi, M Gianfreda, G L Long, S Fan, F Nori, C M Bender, L Yang. Parity–time-symmetric whispering-gallery microcavities. Nature Physics, 2014, 10(5): 394–398
https://doi.org/10.1038/nphys2927
77 C R Doerr, L Chen, D Vermeulen. Silicon photonics broadband modulation-based isolator. Optics Express, 2014, 22(4): 4493–4498
https://doi.org/10.1364/OE.22.004493 pmid: 24663770
78 D L Sounas, A Alù. Non-reciprocal photonics based on time modulation. Nature Photonics, 2017, 11(12): 774–783
https://doi.org/10.1038/s41566-017-0051-x
79 D B Sohn, S Kim, G Bahl. Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits. Nature Photonics, 2018, 12(2): 91–97
https://doi.org/10.1038/s41566-017-0075-2
80 C Zhang, P Dulal, B J H Stadler, D C Hutchings. Monolithically-integrated TE-mode 1D silicon-on-insulator isolators using seedlayer-free garnet. Scientific Reports, 2017, 7(1): 5820
https://doi.org/10.1038/s41598-017-06043-z pmid: 28725052
81 R Chen, D Tao, H Zhou, Y Hao, J Yang, M Wang, X Jiang. Asymmetric multimode interference isolator based on nonreciprocal phase shift. Optics Communications, 2009, 282(5): 862–866
https://doi.org/10.1016/j.optcom.2008.11.064
82 D Huang, P Pintus, Y Shoji, P Morton, T Mizumoto, J E Bowers. Integrated broadband Ce:YIG/Si Mach-Zehnder optical isolators with over 100 nm tuning range. Optics Letters, 2017, 42(23): 4901–4904
https://doi.org/10.1364/OL.42.004901 pmid: 29216139
83 N Liu, J Zhao, L Du, C Niu, C Sun, X Kong, Z Wang, X Li. Giant nonreciprocal transmission in low-biased gyrotropic metasurfaces. Optics Letters, 2020, 45(21): 5917–5920
https://doi.org/10.1364/OL.404765 pmid: 33137031
84 Q Liu, S Gross, P Dekker, M J Withford, M J Steel. Competition of Faraday rotation and birefringence in femtosecond laser direct written waveguides in magneto-optical glass. Optics Express, 2014, 22(23): 28037–28051
https://doi.org/10.1364/OE.22.028037 pmid: 25402044
85 F Auracher, H H Witte. A new design for an integrated optical isolator. Optics Communications, 1975, 13(4): 435–438
https://doi.org/10.1016/0030-4018(75)90140-6
86 Y Shoji, T Mizumoto, H Yokoi, I W Hsieh, R M Osgood Jr. Magneto-optical isolator with silicon waveguides fabricated by direct bonding. Applied Physics Letters, 2008, 92(7): 071117
https://doi.org/10.1063/1.2884855
87 O Zhuromskyy, M Lohmeyer, N Bahlmann, P Hertel, H Dötsch, A F Popkov. Analysis of nonreciprocal light propagation in multimode imaging devices. Optical and Quantum Electronics, 2000, 32(6–8): 885–897
https://doi.org/10.1023/A:1007078814985
88 N Kono, K Kakihara, K Saitoh, M Koshiba. Nonreciprocal microresonators for the miniaturization of optical waveguide isolators. Optics Express, 2007, 15(12): 7737–7751
https://doi.org/10.1364/OE.15.007737 pmid: 19547103
89 Y Zhang, Q Du, C Wang, T Fakhrul, S Liu, L Deng, D Huang, P Pintus, J Bowers, C A Ross, J Hu, L Bi. Monolithic integration of broadband optical isolators for polarization-diverse silicon photonics. Optica, 2019, 6(4): 473–478
https://doi.org/10.1364/OPTICA.6.000473
90 D Regatos, B Sepúlveda, D Fariña, L G Carrascosa, L M Lechuga. Suitable combination of noble/ferromagnetic metal multilayers for enhanced magneto-plasmonic biosensing. Optics Express, 2011, 19(9): 8336–8346
https://doi.org/10.1364/OE.19.008336 pmid: 21643085
91 M G Manera, E Ferreiro-Vila, J M García-Martín, A Cebollada, A García-Martín, G Giancane, L Valli, R Rella. Enhanced magneto-optical SPR platform for amine sensing based on Zn porphyrin dimers. Sensors and Actuators B, Chemical, 2013, 182: 232–238
https://doi.org/10.1016/j.snb.2013.02.057
92 D O Ignatyeva, G A Knyazev, P O Kapralov, G Dietler, S K Sekatskii, V I Belotelov. Magneto-optical plasmonic heterostructure with ultranarrow resonance for sensing applications. Scientific Reports, 2016, 6(1): 28077
https://doi.org/10.1038/srep28077 pmid: 27306301
93 B F Diaz-Valencia, J R Mejía-Salazar, O N Oliveira Jr, N Porras-Montenegro, P Albella. Enhanced transverse magneto optical Kerr effect in magnetoplasmonic crystals for the design of highly sensitive plasmonic (bio)sensing patforms. ACS Omega, 2017, 2(11): 7682–7685
https://doi.org/10.1021/acsomega.7b01458 pmid: 30023560
94 B Caballero, A García-Martín, J C Cuevas. Hybrid magnetoplasmonic crystals boost the performance of nanohole arrays as plasmonic sensors. ACS Photonics, 2016, 3(2): 203–208
https://doi.org/10.1021/acsphotonics.5b00658
95 D Regatos, D Fariña, A Calle, A Cebollada, B Sepúlveda, G Armelles, L M Lechuga. Au/Fe/Au multilayer transducers for magneto-optic surface plasmon resonance sensing. Journal of Applied Physics, 2010, 108(5): 054502
https://doi.org/10.1063/1.3475711
96 E Ferreiro-Vila, J B Gonzalez-Diaz, R Fermento, M U González, A García-Martín, J M García-Martín, A Cebollada, G Armelles, D Meneses-Rodríguez, E M Sandoval. Intertwined magneto-optical and plasmonic effects in Ag/Co/Ag layered structures. Physical Review B, 2009, 80(12): 125132
https://doi.org/10.1103/PhysRevB.80.125132
97 D Traviss, R Bruck, B Mills, M Abb, O L Muskens. Ultrafast plasmonics using transparent conductive oxide hybrids in the epsilon-near-zero regime. Applied Physics Letters, 2013, 102(12): 121112
https://doi.org/10.1063/1.4798833
98 R Rella, M G Manera. Magneto-optical modulation for improved surface plasmon resonance sensors. SPIE Professional, 2016
99 Y Zhang, Q Wang, B Ashall, D Zerulla, G U Lee. Magnetic-plasmonic dual modulated FePt-Au ternary heterostructured nanorods as a promising nano-bioprobe. Advanced Materials, 2012, 24(18): 2485–2490
https://doi.org/10.1002/adma.201103991 pmid: 22488781
100 N Maccaferri, K E Gregorczyk, T V de Oliveira, M Kataja, S van Dijken, Z Pirzadeh, A Dmitriev, J Åkerman, M Knez, P Vavassori. Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas. Nature Communications, 2015, 6(1): 6150
https://doi.org/10.1038/ncomms7150 pmid: 25639190
101 S Pourjamal, M Kataja, N Maccaferri, P Vavassori, S van Dijken. Hybrid Ni/SiO2/Au dimer arrays for high-resolution refractive index sensing. Nanophotonics, 2018, 7(5): 905–912
https://doi.org/10.1515/nanoph-2018-0013
102 S Eslami, J G Gibbs, Y Rechkemmer, J van Slageren, M Alarcón-Correa, T C Lee, A G Mark, G L J A Rikken, P Fischer. Chiral Nanomagnets. ACS Photonics, 2014, 1(11): 1231–1236
https://doi.org/10.1021/ph500305z
103 G Armelles, B Caballero, P Prieto, F García, A Cebollada, M U González, A García-Martin. Magnetic field modulation of chirooptical effects in magnetoplasmonic structures. Nanoscale, 2014, 6(7): 3737–3741
https://doi.org/10.1039/c3nr05889a pmid: 24569696
104 I Zubritskaya, N Maccaferri, X Inchausti Ezeiza, P Vavassori, A Dmitriev. Magnetic control of the chiroptical plasmonic surfaces. Nano Letters, 2018, 18(1): 302–307
https://doi.org/10.1021/acs.nanolett.7b04139 pmid: 29240446
105 J Qin, L Deng, T Kang, L Nie, H Feng, H Wang, R Yang, X Liang, T Tang, J Shen, C Li, H Wang, Y Luo, G Armelles, L Bi. Switching the optical chirality in magnetoplasmonic metasurfaces using applied magnetic fields. ACS Nano, 2020, 14(3): 2808–2816
https://doi.org/10.1021/acsnano.9b05062 pmid: 32074454
106 B Stipe, T Strand, C Poon, H Balamane, T D Boone, J A Katine, J L Li, V Rawat, H Nemoto, A Hirotsune, O Hellwig, R Ruiz, E Dobisz, D S Kercher, N Robertson, T R Albrecht, B D Terris. Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna. Nature Photonics, 2010, 4(7): 484–488
https://doi.org/10.1038/nphoton.2010.90
107 Y Zhang, Q Wang, B Ashall, D Zerulla, G U Lee. Magnetic-plasmonic dual modulated FePt-Au ternary heterostructured nanorods as a promising nano-bioprobe. Advanced materials, 2012, 24(18): 2485–2490
https://doi.org/10.1002/adma.201390000 pmid: 22488781
108 P M Vetoshko, N A Gusev, D A Chepurnova, E V Samoilova, A K Zvezdin, A A Korotaeva, V I Belotelov. Rat magnetocardiography using a flux-gate sensor based on iron garnet films. Biomedical Engineering, 2016, 50(4): 237–240
https://doi.org/10.1007/s10527-016-9628-9
109 V Amendola, S Scaramuzza, L Litti, M Meneghetti, G Zuccolotto, A Rosato, E Nicolato, P Marzola, G Fracasso, C Anselmi, M Pinto, M Colombatti. Magneto-plasmonic Au-Fe alloy nanoparticles designed for multimodal SERS-MRI-CT imaging. Small, 2014, 10(12): 2476–2486
https://doi.org/10.1002/smll.201303372 pmid: 24619736
110 A E Serebryannikov, A Lakhtakia, E Ozbay. Single and cascaded, magnetically controllable metasurfaces as terahertz filters. Journal of the Optical Society of America B, Optical Physics, 2016, 33(5): 834–841
https://doi.org/10.1364/JOSAB.33.000834
111 G Shamuilov, K Domina, V Khardikov, A Nikitin, V Goryashko. Optical magnetic lens: towards actively tunable terahertz optics. Nanoscale, 2021, 13: 108–116
https://doi.org/10.1039/D0NR06198K
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed