Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2022, Vol. 15 Issue (2) : 25    https://doi.org/10.1007/s12200-022-00029-0
Co3O4@NiMoO4 composite electrode materials for flexible hybrid capacitors
Yongli Tong1,3, Tong Zhang1, Yuchen Sun1, Xiaowei Wang1, Xiang Wu1,2()
1. School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
3. School of Science, Shenyang Ligong University, Shenyang 110159, China
 Download: PDF(1954 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Co3O4 nanomaterials as electrodes have been studied widely in the past decade due to their unique structural characteristics. However, their performance does not yet reach the level required for practical applications. It is, nevertheless, an effective strategy to synthesize hybrid electrode materials with high energy density. Herein we prepare Co3O4@NiMoO4 nanowires by a two-step hydrothermal method. The as-obtained sample can be directly used as cathode material of supercapacitors; with specific capacitance of 600 C/g at 1 A/g. An assembled capacitor delivers an energy density of 36.1 Wh/kg at 2700 W/kg, and retains 98.2% of the initial capacity after 8000 cycles.

Keywords Supercapacitor      Co3O4@NiMoO4 nanowires      Specific capacitance      Energy density     
Corresponding Author(s): Xiang Wu   
Issue Date: 22 June 2022
 Cite this article:   
Yongli Tong,Tong Zhang,Yuchen Sun, et al. Co3O4@NiMoO4 composite electrode materials for flexible hybrid capacitors[J]. Front. Optoelectron., 2022, 15(2): 25.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-022-00029-0
https://academic.hep.com.cn/foe/EN/Y2022/V15/I2/25
1 Y. Liu,, X. Wu,: Hydrogen and sodium ions co-intercalated vanadium dioxide electrode materials with enhanced zinc ion storage capacity. Nano Energy 86, 106124 (2021)
https://doi.org/10.1016/j.nanoen.2021.106124
2 W. Shi,, X. Lv,, Y. Shen,: BiOI/WO3 photoanode with enhanced photoelectrochemical water splitting activity. Front. Optoelectron. 11(4), 367–374 (2018)
https://doi.org/10.1007/s12200-018-0835-8
3 Y. Liu,, P. Hu,, H. Liu,, X. Wu,, C. Zhi,: Tetragonal VO2 hollow nanospheres as robust cathode materials for aqueous zinc ion batteries. Mater. Today Energy 17, 100431 (2020)
https://doi.org/10.1016/j.mtener.2020.100431
4 Y. Zhao,, J. He,, M. Dai,, D. Zhao,, X. Wu,, B. Liu,: Emerging CoMn-LDH@MnO2 electrode materials assembled using nanosheets for flexible and foldable energy storage devices. J. Energy Chem. 45, 67–73 (2020)
https://doi.org/10.1016/j.jechem.2019.09.027
5 M. Dai,, H. Liu,, D. Zhao,, X. Zhu,, A. Umar,, H. Algarni,, X. Wu,: Ni foam substrates modified with a ZnCo2O4 nanowire coated with Ni(OH)2 nanosheet electrode for hybrid capacitors and electrocatalysts. ACS Appl. Nano Mater. 4(5), 5461–5468 (2021)
https://doi.org/10.1021/acsanm.1c00825
6 H. Liu,, D. Zhao,, Y. Liu,, Y. Tong,, X. Wu,, G. Shen,: NiMoCo layered double hydroxides for electrocatalyst and supercapacitor electrode. Sci. China Mater. 64(3), 581–591 (2021)
https://doi.org/10.1007/s40843-020-1442-3
7 P.J. Silvia,, K.M. Eddington,, K.L. Harper,, C.J. Burgin,, T.R. Kwapil,: Reward-seeking deficits in major depression: unpacking appetitive task performance with ex-Gaussian response time variability analysis. Motivation Sci. 7(2), 219–224 (2021)
https://doi.org/10.1037/mot0000208
8 D. Zhao,, M. Dai,, H. Liu,, X. Zhu,, X. Wu,: PPy film anchored on ZnCo2O4 nanowires facilitating efficient bifunctional electrocatalysis. Materials Today Energy 20, 100637 (2021)
https://doi.org/10.1016/j.mtener.2021.100637
9 Y. Tong,, X. Cheng,, X. Liu,, D. Qi,, B. Chi,, Y. Wang,: Hybrid Co3O4/Co9S8 nanowires for high-performance asymmetric supercapacitors. J. Nanoelectron. Optoelectron. 15, 237–242 (2020)
https://doi.org/10.1166/jno.2020.2691
10 C. Liu,, X. Wu,, B. Wang,: Performance modulation of energy storage devices: a case of Ni-Co-S electrode materials. Chem. Eng. J. 392, 123651 (2020)
https://doi.org/10.1016/j.cej.2019.123651
11 H. Liu,, D. Zhao,, Y. Liu,, P. Hu,, X. Wu,, H. Xia,: Boosting energy storage and electrocatalytic performances by synergizing CoMoO4@ MoZn22 core-shell structures. Chem. Eng. J. 373, 485–492 (2019)
https://doi.org/10.1016/j.cej.2019.05.066
12 H. Liu,, D. Zhao,, P. Hu,, K. Chen,, X. Wu,, D. Xue,: Design strategies toward achieving high-performance CoMoO4@ Co1.62Mo6S8 electrode materials. Mater. Today Phys. 13, 100197 (2020)
https://doi.org/10.1016/j.mtphys.2020.100197
13 S. Peng,, L. Li,, H. Wu,, S. Madhavi,, X. Lou,: Controlled growth of NiMoO4 nanosheet and nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors. Adv. Energy Mater. 5(2), 1401172 (2015)
https://doi.org/10.1002/aenm.201401172
14 K. Qiu,, Y. Lu,, D. Zhang,, J. Cheng,, H. Yan,, J. Xu,, X. Liu,, J. Kim,, Y. Luo,: Mesoporous hierarchical core/shell structured ZnCo2O4/ MnO2 nanocone forests for high-performance supercapacitors. Nano Energy 11, 687–696 (2015)
https://doi.org/10.1016/j.nanoen.2014.11.063
15 D. Zhao,, H. Liu,, X. Wu,: Bi-interface induced multi-active MCo2O4@ MCo2S4@PPy (M=Ni, Zn) sandwich structure for energy storage and electrocatalysis. Nano Energy 57, 363–370 (2019)
https://doi.org/10.1016/j.nanoen.2018.12.066
16 X. Gao,, Y. Zhang,, M. Huang,, F. Li,, C. Hua,, L. Yu,, H. Zheng,: Facile synthesis of Co3O4@ NiCo2O4 core–shell arrays on Ni foam for advanced binder-free supercapacitor electrodes. Ceram. Int. 40(10), 15641–15646 (2014)
https://doi.org/10.1016/j.ceramint.2014.07.084
17 Z. Gu,, J. Guo,, X. Zhao,, X. Wang,, D. Xie,, Z. Sun,, C. Zhao,, H. Liang,, W. Li,, X. Wu,: High-ionicity fluorophosphate lattice via aliovalent substitution as advanced cathode materials in sodium-ion batteries. InfoMat 3(6), 694–704 (2021)
https://doi.org/10.1002/inf2.12184
18 M. Dai,, D. Zhao,, X. Wu,: Research progress on transition metal oxide based electrode materials for asymmetric hybrid capacitors. Chin. Chem. Lett. 31(9), 2177–2188 (2020)
https://doi.org/10.1016/j.cclet.2020.02.017
19 H. Liu,, M. Dai,, D. Zhao,, X. Wu,, B. Wang,: Realizing superior electrochemical performance for asymmetric capacitors through tailoring electrode architectures. ACS Appl. Energy Mater. 3(7), 7004–7010 (2020)
https://doi.org/10.1021/acsaem.0c01055
20 M. Dai,, D. Zhao,, H. Liu,, Y. Tong,, P. Hu,, X. Wu,: Nanostructure and doping engineering of ZnCoP for high performance electrolysis of water. Mater. Today Energy 16, 100412 (2020)
https://doi.org/10.1016/j.mtener.2020.100412
21 X. Zhu,, F. Meng,, Q. Zhang,, L. Xue,, H. Zhu,, S. Lan,, Q. Liu,, J. Zhao,, Y. Zhuang,, Q. Guo,, B. Liu,, L. Gu,, X. Lu,, Y. Ren,, H. Xia,: LiMnO2 cathode stabilized by interfacial orbital ordering for sustainable lithium-ion batteries. Nat. Sustain. 4(5), 392–401 (2021)
https://doi.org/10.1038/s41893-020-00660-9
22 L. Xing,, Y. Dong,, F. Hu,, X. Wu,, A. Umar,: Co3O4 nanowire@ NiO nanosheet arrays for high performance asymmetric supercapacitors. Dalton Trans. (Cambridge, England) 47(16), 5687–5694 (2018)
https://doi.org/10.1039/C8DT00750K
23 Y. Tong,, H. Liu,, M. Dai,, L. Xiao,, X. Wu,: Metal-organic framework-derived Co3O4/PPy bifunctional electrocatalysts for efficient overall water splitting. Chin. Chem. Lett. 31(9), 2295–2299 (2020)
https://doi.org/10.1016/j.cclet.2020.03.029
24 L. Xing,, Y. Dong,, X. Wu,: Hierarchical Co3O4@ Co9S8 nanowall structures assembled by many nanosheets for high performance asymmetric supercapacitors. RSC Adv. 8(49), 28172–28178 (2018)
https://doi.org/10.1039/C8RA05722B
25 P. Hu,, Y. Liu,, H. Liu,, W. Xiang,, B. Liu,: MnCo2O4 nanosheet/ NiCo2S4 nanowire heterostructures as cathode materials for capacitors. ACS Appl. Nano Mater. 4(2), 2183–2189 (2021)
https://doi.org/10.1021/acsanm.1c00001
26 Y. Tong,, M. Dai,, L. Xing,, H. Liu,, W. Sun,, X. Wu,: Asymmetric hybrid capacitor based on NiCo2O4 nanosheets electrode. Wuli Huaxue Xuebao 36(7), 1903046 (2020)
https://doi.org/10.3866/PKU.WHXB201903046
27 D. Zhao,, M. Dai,, H. Liu,, K. Chen,, X. Zhu,, D. Xue,, X. Wu,, J. Liu,: Sulfur induced interface engineering of hybrid NiCo2O4@ NiMo2S4 structure for overall water splitting and flexible hybrid energy storage. Adv. Mater. Interfaces 6(21), 1901308 (2019)
https://doi.org/10.1002/admi.201901308
28 Y. Lu,, B. Deng,, Y. Liu,, J. Wang,, Z. Tu,, J. Lu,, X. Xiao,, G. Xu,: Nanostructured Co3O4 for achieving high-performance supercapacitor. Mater. Lett. 285, 129101 (2021)
https://doi.org/10.1016/j.matlet.2020.129101
29 P. Sivakumar,, M. Jana,, M. Kota,, M.G. Jung,, A. Gedanken,, H.S. Park,: Controllable synthesis of nanohorn-like architectured cobalt oxide for hybrid supercapacitor application. J. Power Sources 402, 147–156 (2018)
https://doi.org/10.1016/j.jpowsour.2018.09.026
30 D. Zhao,, F. Hu,, A. Umar,, X. Wu,: NiCo2O4 nanowires based flexible electrode materials for asymmetric supercapacitors. N. J. Chem. 42(9), 7399–7406 (2018)
https://doi.org/10.1039/C8NJ00935J
31 H. Zhang,, B. Yan,, C. Zhou,, J. Wang,, H. Duan,, D. Zhang,, H. Zhao,: MOF-derived hollow and porous Co3O4 nanocages for superior hybrid supercapacitor electrodes. Energy Fuels 35(20), 16925–16932 (2021)
https://doi.org/10.1021/acs.energyfuels.1c02613
32 S. Liang,, H. Wang,, Y. Li,, H. Qin,, Z. Luo,, L. Chen,: Ternary synergistic transition metal oxalate 2D porous thin sheets assembled by 3D nanoflake array with high performance for supercapattery. Appl. Surf. Sci. 567, 150809 (2021)
https://doi.org/10.1016/j.apsusc.2021.150809
33 Y. Jiang,, L. Chen,, H. Zhang,, Q. Zhang,, W. Chen,, J. Zhu,, D. Song,: Two-dimensional Co3O4 thin sheets assembled by 3D interconnected nanoflake array framework structures with enhanced supercapacitor performance derived from coordination complexes. Chem. Eng. J. 292, 1–12 (2016)
https://doi.org/10.1016/j.cej.2016.02.009
34 D. Song,, J. Zhu,, J. Li,, T. Pu,, B. Huang,, C. Zhao,, L. Xie,, L. Chen,: Free-standing two-dimensional mesoporous ZnCo2O4 thin sheets consisting of 3D ultrathin nanoflake array frameworks for high performance asymmetric supercapacitor. Electrochim. Acta 257, 455–464 (2017)
https://doi.org/10.1016/j.electacta.2017.10.116
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed