Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2022, Vol. 15 Issue (3) : 37    https://doi.org/10.1007/s12200-022-00039-y
RESEARCH ARTICLE
Application of phase-conjugate beams in beam correction and underwater optical wireless communication subject to surface wave turbulence
Qi Li1(), Xiuhua Yuan1, Feng Zhou1,2, Zeyu Zhou1, Wujie Liu1
1. School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
2. Key Laboratory of Hunan Province On Information Photonics and Freespace Optical Communications, School of Information Science and Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
 Download: PDF(4498 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Water surface wave turbulence is one of the factors affecting the performances of underwater optical wireless communication (UOWC) systems. In our research, a phase-conjugate beam was used to correct the beam distortion and enhance the communication performances when a system is subject to surface wave turbulence. The phase-conjugate beam was generated by a phase-conjugate mirror (PCM), and a turbulence generator was used to generate surface wave turbulence in the experiment. We calculated the beam centroid distribution and the results showed that the phase-conjugate beam had a better propagation performance than the distorted beam at the different water depths. The root mean square (RMS) of the beam centroid for the phase-conjugate beam was 11 times less than that for the distorted beam, which meant that the phase-conjugate beam could effectively correct the beam drift. We further investigated the scintillation index and the signal-to-noise ratio (SNR); the results showed that the phase-conjugate beam was able to reduce the scintillation and an obvious improvement in SNR could be obtained. This research has the potential to be applied in UWC.

Keywords Phase-conjugate beam      Underwater optical wireless communication (UOWC)      Degenerate four-wave mixing (DFWM)      Surface wave turbulence     
Corresponding Author(s): Qi Li   
Issue Date: 26 October 2022
 Cite this article:   
Qi Li,Xiuhua Yuan,Feng Zhou, et al. Application of phase-conjugate beams in beam correction and underwater optical wireless communication subject to surface wave turbulence[J]. Front. Optoelectron., 2022, 15(3): 37.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-022-00039-y
https://academic.hep.com.cn/foe/EN/Y2022/V15/I3/37
1 Z. Zeng,, S. Fu,, H. Zhang,, Y. Dong,, J. Cheng,: A survey of underwater optical wireless communications. IEEE Commun. Surv. Tutor. 19(1), 204–238 (2017)
https://doi.org/10.1109/COMST.2016.2618841
2 S. Karp,, R.M. Gagliardi,, S.E. Moran,, L. Stotts,: Optical Channels. Springer, USA (1988)
https://doi.org/10.1007/978-1-4899-0806-3
3 F. Chao,, J. Zhang,, G. Zhang,, Y. Wu,, X. Hong,, S. He,: Demonstration of 15-M 7.33-Gb/s 450-nm underwater wireless optical discrete multitone transmission using post nonlinear equalization. J. Lightwave Technol. 36(3), 728–734 (2018)
https://doi.org/10.1109/JLT.2017.2780841
4 N. Farr,, A. Chave,, L. Freitag,, J. Preisig,, S.N. White,, D. Yoerger,, F. Sonnichsen,: Optical modem technology for seafloor observatories. In: Proceedings of MTS/IEEE. OCEANS (2006)
https://doi.org/10.1109/OCEANS.2006.306806
5 S.Q. Duntley,: Light in the sea. J. Soc. Am. A 53, 214–233 (1963)
https://doi.org/10.1364/JOSA.53.000214
6 C. Shen,, Y. Guo,, X. Sun,, G. Liu,, K. Ho,, T.K. Ng,, M. Alouini,, B.S. Ooi.: Going beyond 10-meter, Gbit/s underwater optical wireless communication links based on visible lasers. In: Proceedings of Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC), pp. 1–3 (2017)
https://doi.org/10.1109/OECC.2017.8115036
7 X. Liu,, S. Yi,, X. Zhou,, Z. Fang,, Z.-J. Qiu,, L. Hu,, C. Cong,, L. Zheng,, R. Liu,, P. Tian,: 34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation. Opt. Express 25, 27937–27947 (2017)
https://doi.org/10.1364/OE.25.027937
8 S. Hu,, L. Mi,, T. Zhou,, W. Chen,: 35.88 attenuation lengths and 3.32 bits/photon underwater optical wireless communication based on photon-counting receiver with 256-PPM. Opt. Express 26, 21685–21699 (2018)
https://doi.org/10.1364/OE.26.021685
9 F. Hanson,, S. Radic,: High bandwidth underwater optical communication. Appl. Opt. 47(2), 277 (2008)
https://doi.org/10.1364/AO.47.000277
10 J.B. Snow,, J.P. Flatley,, D.E. Freeman,, M. Landry,, C. Lindstrom,, J. Longacre,, J. Schwartz,: Underwater propagation of high-datarate laser communications pulses. In: Proceedings of SPIE - The International Society for Optical Engineering, pp. 1750 (1992)
https://doi.org/10.1117/12.140670
11 V.E. Zakharov,, V.S. Lvov,, G. Falkovich,: Kolmogorov Spectra of Turbulence I. Kolmogorov Spectra of Turbulence 1. Wave Turbulence, pp. 275. Springer, Berlin (1992)
https://doi.org/10.1007/978-3-642-50052-7_1
12 Q. Aubourg,, A. Campagne,, C. Peureux,, F. Ardhuin,, J. Sommeria,, S. Viboud,, N. Mordant,: 3-wave and 4-wave interactions in gravity wave turbulence. Phys. Rev. Fluids 2(11), e3 (2017)
https://doi.org/10.1103/PhysRevFluids.2.114802
13 S. Nazarenko,: Wave turbulence. In: Lecture Notes in Physics. Springer, Berlin (2011)
https://doi.org/10.1007/978-3-642-15942-8
14 M. Elamassie,, F. Miramirkhani,, M. Uysal,: Performance characterization of underwater visible light communication. IEEE Trans. Commun. 67(1), 543–552 (2019)
https://doi.org/10.1109/TCOMM.2018.2867498
15 M.V. Jamali,, J.A. Salehi,, F. Akhoundi,: Performance studies of underwater wireless optical communication systems with spatial diversity: MIMO Scheme. IEEE Trans. Commun. 65(3), 1176–1192 (2017)
https://doi.org/10.1109/TCOMM.2016.2642943
16 N. Anous,, M.M. Abdallah,, K. Qaraqe,: Performance evaluation for vertical inhomogeneous underwater visible light communications. In: Proceedings of IEEE 86th Vehicular Technology Conference: VTC2017-Fall (2017)
https://doi.org/10.1109/VTCFall.2017.8287961
17 J. Li,, X.H. Yuan,, J. Luo,, S. Li,: The centroid drift of laser spots with water surface wave turbulence in underwater optical wireless communication. Appl. Opt. 59(20), 6210–6217 (2020)
https://doi.org/10.1364/AO.393653
18 R.W. Boyd,: Nonlinear Optics. Academic Press, New York (2020)
19 G. Reiner,, M.R. Belić,, P. Meystre,: Optical turbulence in phaseconjugate resonators. J. Opt. Soc. Am. B 5(5), 1193–1209 (1988)
https://doi.org/10.1364/JOSAB.5.001193
20 C. Egami,, K. Nakagawa,, H. Fujiwara,: Efficient optical phase conjugation in methyl-orange-doped polyvinyl alcohol film. Jpn. J. Appl. Phys. 31(9), 2937–2940 (2014)
https://doi.org/10.1143/JJAP.31.2937
21 H.S. Nalwa,, S. Miyata,: Nonlinear Optics of Organic Molecules and Polymers. CRC Press, New York (1996)
https://doi.org/10.1117/1.601490
22 N. Chen,: Phase-conjugated distortion by degenerate four-wave mixing. Opt. Commun. 59(1), 69–71 (1986)
https://doi.org/10.1016/0030-4018(86)90049-0
23 S. Aithal,, P.S. Aithal,, G. Bhat,: Comparative study on Azo dyedoped polymer films for optical phase conjugation. Int. J. Sci. Res. 4(4), 436–441 (2015)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed