|
|
Potassium ion pre-intercalated MnO2 for aqueous multivalent ion batteries |
Zikang Xu1, Ruiqi Ren1, Hang Ren1, Jingyuan Zhang1, Jinyao Yang1, Jiawen Qiu1, Yizhou Zhang1, Guoyin Zhu1( ), Liang Huang2( ), Shengyang Dong1( ) |
1. School of Environmental Science and Engineering, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China 2. Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China |
|
|
Abstract Manganese dioxide (MnO2), as a cathode material for multivalent ion (such as Mg2+ and Al3+) storage, is investigated due to its high initial capacity. However, during multivalent ion insertion/extraction, the crystal structure of MnO2 partially collapses, leading to fast capacity decay in few charge/discharge cycles. Here, through pre-intercalating potassium-ion (K+) into δ-MnO2, we synthesize a potassium ion pre-intercalated MnO2, K0.21MnO2·0.31H2O (KMO), as a reliable cathode material for multivalent ion batteries. The as-prepared KMO exhibits a high reversible capacity of 185 mAh/g at 1 A/g, with considerable rate performance and improved cycling stability in 1 mol/L MgSO4 electrolyte. In addition, we observe that aluminum-ion (Al3+) can also insert into a KMO cathode. This work provides a valid method for modification of manganese-based oxides for aqueous multivalent ion batteries.
|
Keywords
Aqueous batteries
Multivalent ion batteries
Magnesium ion
Aluminum ion
MnO2
|
Corresponding Author(s):
Guoyin Zhu,Liang Huang,Shengyang Dong
|
Issue Date: 13 December 2023
|
|
1 |
S. Hu,, A.S. Pillai,, G. Liang,, W.K. Pang,, H. Wang,, Q. Li,, Z. Guo,: Li-rich layered oxides and their practical challenges: recent progress and perspectives. Electrochem. Energy Rev. 2(2), 277–311 (2019)
https://doi.org/10.1007/s41918-019-00032-8
|
2 |
Y. Shao-Horn,, L. Croguennec,, C. Delmas,, E.C. Nelson,, M.A. O’Keefe,: Atomic resolution of lithium ions in LiCoO2. Nat. Mater. 2(7), 464–467 (2003)
https://doi.org/10.1038/nmat922
|
3 |
J.M. Tarascon,, M. Armand,: Issues and challenges facing rechargeable lithium batteries. Nature 414(6861), 359–367 (2001)
https://doi.org/10.1038/35104644
|
4 |
M.S. Whittingham,: Lithium batteries and cathode materials. Chem. Rev. 104(10), 4271–4302 (2004)
https://doi.org/10.1021/cr020731c
|
5 |
S. Dong,, Y. Wu,, N. Lv,, R. Ren,, L. Huang,: Porous sodium titanate nanofibers for high energy quasi-solid-state sodium-ion hybrid capacitors. Rare Met. 41(7), 2453–2459 (2022)
https://doi.org/10.1007/s12598-022-02002-4
|
6 |
H. Kim,, J. Hong,, K. Park,, H. Kim,, S. Kim,, K. Kang,: Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114(23), 11788–11827 (2014)
https://doi.org/10.1021/cr500232y
|
7 |
J.O.G. Posada,, A.J.R. Rennie,, S.P. Villar,, V.L. Martins,, J. Marinaccio,, A. Barnes,, C.F. Glover,, D.A. Worsley,, P.J. Hall,: Aqueous batteries as grid scale energy storage solutions. Renewable Sustain. Energy Rev. 68, 1174–1182 (2017)
https://doi.org/10.1016/j.rser.2016.02.024
|
8 |
H. Zhang,, X. Liu,, H. Li,, I. Hasa,, S. Passerini,: Challenges and strategies for high-energy aqueous electrolyte rechargeable batteries. Angew. Chem. Int. Ed. 60(2), 598–616 (2021)
https://doi.org/10.1002/anie.202004433
|
9 |
Y. Tong,, T. Zhang,, Y. Sun,, X. Wang,, X. Wu,: Co3O4@NiMoO4 composite electrode materials for flexible hybrid capacitors. Front. Optoelectron. 15(1), 25 (2022)
https://doi.org/10.1007/s12200-022-00029-0
|
10 |
S. Chen,, M. Zhang,, P. Zou,, B. Sun,, S. Tao,: Historical development and novel concepts on electrolytes for aqueous rechargeable batteries. Energy Environ. Sci. 15(5), 1805–1839 (2022)
https://doi.org/10.1039/D2EE00004K
|
11 |
S. Dong,, W. Shin,, H. Jiang,, X. Wu,, Z. Li,, J. Holoubek,, W.F. Stickle,, B. Key,, C. Liu,, J. Lu,, P.A. Greaney,, X. Zhang,, X. Ji,: Ultra-fast NH4+ storage: strong H Bonding between NH4+ and Bi-layered V2O5. Chem. 5(6), 1537–1551 (2019)
https://doi.org/10.1016/j.chempr.2019.03.009
|
12 |
S. Dong,, Y. Wang,, C. Chen,, L. Shen,, X. Zhang,: Niobium tungsten oxide in a green water-in-salt electrolyte enables ultrastable aqueous lithium-ion capacitors. Nano-Micro Lett. 12(1), 168 (2020)
https://doi.org/10.1007/s40820-020-00508-z
|
13 |
G. Liang,, F. Mo,, Q. Yang,, Z. Huang,, X. Li,, D. Wang,, Z. Liu,, H. Li,, Q. Zhang,, C. Zhi,: Commencing an acidic battery based on a copper anode with ultrafast proton-regulated kinetics and superior dendrite-free property. Adv. Mater. 31(52), 1905873 (2019)
https://doi.org/10.1002/adma.201905873
|
14 |
H. Wang,, R. Tan,, Z. Yang,, Y. Feng,, X. Duan,, J. Ma,: Stabilization perspective on metal anodes for aqueous batteries. Adv. Energy Mater. 11(2), 2000962 (2021)
https://doi.org/10.1002/aenm.202000962
|
15 |
D. Yang,, Y. Zhou,, H. Geng,, C. Liu,, B. Lu,, X. Rui,, Q. Yan,: Pathways towards high energy aqueous rechargeable batteries. Coord. Chem. Rev. 424, 213521 (2020)
https://doi.org/10.1016/j.ccr.2020.213521
|
16 |
T. Famprikis,, P. Canepa,, J.A. Dawson,, M.S. Islam,, C. Masquelier,: Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18(12), 1278–1291 (2019)
https://doi.org/10.1038/s41563-019-0431-3
|
17 |
D. Chen,, D. Tao,, X. Ren,, F. Wen,, T. Li,, Z. Chen,, Y. Cao,, F. Xu,: A molybdenum polysulfide in-situ generated from ammonium tetrathiomolybdate for high-capacity and high-power rechargeable magnesium battery cathodes. ACS Nano 16(12), 20510–20520 (2022)
https://doi.org/10.1021/acsnano.2c06915
|
18 |
Y. Liu,, Z. Qin,, X. Yang,, J. Liu,, X.-X. Liu,, X. Sun,: High-volt-age manganese oxide cathode with two-electron transfer enabled by a phosphate proton reservoir for aqueous zinc batteries. ACS Energy Lett. 7(5), 1814–1819 (2022)
https://doi.org/10.1021/acsenergylett.2c00777
|
19 |
X. Qin,, X. Zhao,, G. Zhang,, Z. Wei,, L. Li,, X. Wang,, C. Zhi,, H. Li,, C. Han,, B. Li,: Highly reversible intercalation of calcium ions in layered vanadium compounds enabled by acetonitrile–water hybrid electrolyte. ACS Nano 17(13), 12040–12051 (2023)
https://doi.org/10.1021/acsnano.2c07061
|
20 |
J. Yang,, W. Gong,, F. Geng,: Defect modulation in cobalt manganese oxide sheets for stable and high-energy aqueous aluminumion batteries. Adv. Funct. Mater. 33(27), 2301202 (2023)
https://doi.org/10.1002/adfm.202301202
|
21 |
Z. Peng,, Y. Li,, P. Ruan,, Z. He,, L. Dai,, S. Liu,, L. Wang,, S. Chan Jun,, B. Lu,, J. Zhou,: Metal-organic frameworks and beyond: the road toward zinc-based batteries. Coord. Chem. Rev. 488, 215190 (2023)
https://doi.org/10.1016/j.ccr.2023.215190
|
22 |
R. Yi,, X. Shi,, Y. Tang,, Y. Yang,, P. Zhou,, B. Lu,, J. Zhou,: Carboxymethyl chitosan-modified zinc anode for high-performance zinc–iodine battery with narrow operating voltage. Small Struct. 4(9), 2300020 (2023)
https://doi.org/10.1002/sstr.202300020
|
23 |
X. Xie,, J. Li,, Z. Xing,, B. Lu,, S. Liang,, J. Zhou,: Biocompatible zinc battery with programmable electro-cross-linked electrolyte. Natl. Sci. Rev. 10(3), nwac281 (2023)
https://doi.org/10.1093/nsr/nwac281
|
24 |
C. You,, X. Wu,, X. Yuan,, Y. Chen,, L. Liu,, Y. Zhu,, L. Fu,, Y. Wu,, Y.-G. Guo,, T. van Ree,: Advances in rechargeable Mg batteries. J. Mater. Chem. A. 8(48), 25601–25625 (2020)
https://doi.org/10.1039/D0TA09330K
|
25 |
J. Zhang,, Z. Chang,, Z. Zhang,, A. Du,, S. Dong,, Z. Li,, G. Li,, G. Cui,: Current design strategies for rechargeable magnesium-based batteries. ACS Nano 15(10), 15594–15624 (2021)
https://doi.org/10.1021/acsnano.1c06530
|
26 |
C. Pei,, F. Xiong,, Y. Yin,, Z. Liu,, H. Tang,, R. Sun,, Q. An,, L. Mai,: Recent progress and challenges in the optimization of electrode materials for rechargeable magnesium batteries. Small 17(3), 2004108 (2021)
https://doi.org/10.1002/smll.202004108
|
27 |
J. Song,, M. Noked,, E. Gillette,, J. Duay,, G. Rubloff,, S.B. Lee,: Activation of a MnO2 cathode by water-stimulated Mg2+ insertion for a magnesium ion battery. Phys. Chem. Chem. Phys. 17(7), 5256–5264 (2015)
https://doi.org/10.1039/C4CP05591H
|
28 |
K.W. Nam,, S. Kim,, S. Lee,, M. Salama,, I. Shterenberg,, Y. Gofer,, J.S. Kim,, E. Yang,, C.S. Park,, J.S. Kim,, S.S. Lee,, W.S. Chang,, S.G. Doo,, Y.N. Jo,, Y. Jung,, D. Aurbach,, J.W. Choi,: The high performance of crystal water containing manganese birnessite cathodes for magnesium batteries. Nano Lett. 15(6), 4071–4079 (2015)
https://doi.org/10.1021/acs.nanolett.5b01109
|
29 |
P. Saha,, P.H. Jampani,, M.K. Datta,, D. Hong,, B. Gattu,, P. Patel,, K.S. Kadakia,, A. Manivannan,, P.N. Kumta,: A rapid solid-state synthesis of electrochemically active Chevrel phases (Mo6T8; T = S, Se) for rechargeable magnesium batteries. Nano Res. 10(12), 4415–4435 (2017)
https://doi.org/10.1007/s12274-017-1695-z
|
30 |
P. Canepa,, G. Sai Gautam,, D.C. Hannah,, R. Malik,, M. Liu,, K.G. Gallagher,, K.A. Persson,, G. Ceder,: Odyssey of multivalent cathode materials: open questions and future challenges. Chem. Rev. 117(5), 4287–4341 (2017)
https://doi.org/10.1021/acs.chemrev.6b00614
|
31 |
J.L. Andrews,, A. Mukherjee,, H.D. Yoo,, A. Parija,, P.M. Marley,, S. Fakra,, D. Prendergast,, J. Cabana,, R.F. Klie,, S. Banerjee,: Reversible Mg-ion insertion in a metastable one-dimensional polymorph of V2O5. Chem. 4(3), 564–585 (2018)
https://doi.org/10.1016/j.chempr.2017.12.018
|
32 |
V. Augustyn,, P. Simon,, B. Dunn,: Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7(5), 1597–1614 (2014)
https://doi.org/10.1039/c3ee44164d
|
33 |
R. Zhang,, X. Yu,, K.-W. Nam,, C. Ling,, T.S. Arthur,, W. Song,, A.M. Knapp,, S.N. Ehrlich,, X.-Q. Yang,, M. Matsui,: α-MnO2 as a cathode material for rechargeable Mg batteries. Electrochem. Commun. 23, 110–113 (2012)
https://doi.org/10.1016/j.elecom.2012.07.021
|
34 |
J.-S. Kim,, W. Chang,, R. Kim,, D. Kim,, D. Han,, K. Lee,, S. Lee,, S. Doo,: High-capacity nanostructured manganese dioxide cathode for rechargeable magnesium ion batteries. J. Power. Sources 273, 210–215 (2015)
https://doi.org/10.1016/j.jpowsour.2014.07.162
|
35 |
W. Chen,, X. Zhan,, B. Luo,, Z. Ou,, P. Shih,, L. Yao,, S. Pidaparthy,, A. Patra,, H. An,, P.V. Braun,, R.M. Stephens,, H. Yang,, J. Zuo,, Q. Chen,: Effects of particle size on Mg2+ ion intercalation into λ-MnO2 cathode materials. Nano Lett. 19(7), 4712–4720 (2019)
https://doi.org/10.1021/acs.nanolett.9b01780
|
36 |
C. Zhang,, X. Zhan,, T. Al-Zoubi,, Y. Ma,, P. Shih,, F. Wang,, W. Chen,, S. Pidaparthy,, R.M. Stephens,, Q. Chen,, J. Zuo,, H. Yang,: Electrochemical generation of birnessite MnO2 nanoflowers for intercalation of Mg2+ ions. Nano Energy 102, 107696 (2022)
https://doi.org/10.1016/j.nanoen.2022.107696
|
37 |
M. Clites,, E. Pomerantseva,: Bilayered vanadium oxides by chemical pre-intercalation of alkali and alkali-earth ions as battery electrodes. Energy Storage Mater. 11, 30–37 (2018)
https://doi.org/10.1016/j.ensm.2017.09.005
|
38 |
H. Tang,, F. Xiong,, Y. Jiang,, C. Pei,, S. Tan,, W. Yang,, M. Li,, Q. An,, L. Mai,: Alkali ions pre-intercalated layered vanadium oxide nanowires for stable magnesium ions storage. Nano Energy 58, 347–354 (2019)
https://doi.org/10.1016/j.nanoen.2019.01.053
|
39 |
S. Rasul,, S. Suzuki,, S. Yamaguchi,, M. Miyayama,: High capacity positive electrodes for secondary Mg-ion batteries. Electrochim. Acta 82, 243–249 (2012)
https://doi.org/10.1016/j.electacta.2012.03.095
|
40 |
V. Augustyn,, J. Come,, M.A. Lowe,, J.W. Kim,, P. Taberna,, S.H. Tolbert,, H.D. Abruña,, P. Simon,, B. Dunn,: High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12(6), 518–522 (2013)
https://doi.org/10.1038/nmat3601
|
41 |
C. Choi,, D.S. Ashby,, D.M. Butts,, R.H. DeBlock,, Q. Wei,, J. Lau,, B. Dunn,: Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 5(1), 5–19 (2020)
https://doi.org/10.1038/s41578-019-0142-z
|
42 |
T. Koketsu,, J. Ma,, B.J. Morgan,, M. Body,, C. Legein,, W. Dachraoui,, M. Giannini,, A. Demortière,, M. Salanne,, F. Dardoize,, H. Groult,, O.J. Borkiewicz,, K.W. Chapman,, P. Strasser,, D. Dambournet,: Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2. Nat. Mater. 16(11), 1142–1148 (2017)
https://doi.org/10.1038/nmat4976
|
43 |
D. Wu,, Y. Zhuang,, F. Wang,, Y. Yang,, J. Zeng,, J. Zhao,: High-rate performance magnesium batteries achieved by direct growth of honeycomb-like V2O5 electrodes with rich oxygen vacancies. Nano Res. 16(4), 4880–4887 (2023)
https://doi.org/10.1007/s12274-021-3679-2
|
44 |
C. Yuan,, Y. Zhang,, Y. Pan,, X. Liu,, G. Wang,, D. Cao,: Investigation of the intercalation of polyvalent cations (Mg2+, Zn2+) into λ-MnO2 for rechargeable aqueous battery. Electrochim. Acta 116, 404–412 (2014)
https://doi.org/10.1016/j.electacta.2013.11.090
|
45 |
M. Liu,, Z. Rong,, R. Malik,, P. Canepa,, A. Jain,, G. Ceder,, K.A. Persson,: Spinel compounds as multivalent battery cathodes: a systematic evaluation based on ab initio calculations. Energy Environ. Sci. 8(3), 964–974 (2015)
https://doi.org/10.1039/C4EE03389B
|
46 |
C. Wu,, S. Gu,, Q. Zhang,, Y. Bai,, M. Li,, Y. Yuan,, H. Wang,, X. Liu,, Y. Yuan,, N. Zhu,, F. Wu,, H. Li,, L. Gu,, J. Lu,: Electrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery. Nat. Commun. 10(1), 73 (2019)
https://doi.org/10.1038/s41467-018-07980-7
|
47 |
S. Gu,, H. Wang,, C. Wu,, Y. Bai,, H. Li,, F. Wu,: Confirming reversible Al3+ storage mechanism through intercalation of Al3+ into V2O5 nanowires in a rechargeable aluminum battery. Energy Storage Mater. 6, 9–17 (2017)
https://doi.org/10.1016/j.ensm.2016.09.001
|
48 |
H. Yang,, H. Li,, J. Li,, Z. Sun,, K. He,, H.-M. Cheng,, F. Li,: The rechargeable aluminum battery: opportunities and challenges. Angew. Chem. Int. Ed. 58(35), 11978–11996 (2019)
https://doi.org/10.1002/anie.201814031
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|