Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2023, Vol. 16 Issue (4) : 39    https://doi.org/10.1007/s12200-023-00093-0
LETTER
Potassium ion pre-intercalated MnO2 for aqueous multivalent ion batteries
Zikang Xu1, Ruiqi Ren1, Hang Ren1, Jingyuan Zhang1, Jinyao Yang1, Jiawen Qiu1, Yizhou Zhang1, Guoyin Zhu1(), Liang Huang2(), Shengyang Dong1()
1. School of Environmental Science and Engineering, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
2. Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(1323 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Manganese dioxide (MnO2), as a cathode material for multivalent ion (such as Mg2+ and Al3+) storage, is investigated due to its high initial capacity. However, during multivalent ion insertion/extraction, the crystal structure of MnO2 partially collapses, leading to fast capacity decay in few charge/discharge cycles. Here, through pre-intercalating potassium-ion (K+) into δ-MnO2, we synthesize a potassium ion pre-intercalated MnO2, K0.21MnO2·0.31H2O (KMO), as a reliable cathode material for multivalent ion batteries. The as-prepared KMO exhibits a high reversible capacity of 185 mAh/g at 1 A/g, with considerable rate performance and improved cycling stability in 1 mol/L MgSO4 electrolyte. In addition, we observe that aluminum-ion (Al3+) can also insert into a KMO cathode. This work provides a valid method for modification of manganese-based oxides for aqueous multivalent ion batteries.

Keywords Aqueous batteries      Multivalent ion batteries      Magnesium ion      Aluminum ion      MnO2     
Corresponding Author(s): Guoyin Zhu,Liang Huang,Shengyang Dong   
Issue Date: 13 December 2023
 Cite this article:   
Zikang Xu,Ruiqi Ren,Hang Ren, et al. Potassium ion pre-intercalated MnO2 for aqueous multivalent ion batteries[J]. Front. Optoelectron., 2023, 16(4): 39.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-023-00093-0
https://academic.hep.com.cn/foe/EN/Y2023/V16/I4/39
1 S. Hu,, A.S. Pillai,, G. Liang,, W.K. Pang,, H. Wang,, Q. Li,, Z. Guo,: Li-rich layered oxides and their practical challenges: recent progress and perspectives. Electrochem. Energy Rev. 2(2), 277–311 (2019)
https://doi.org/10.1007/s41918-019-00032-8
2 Y. Shao-Horn,, L. Croguennec,, C. Delmas,, E.C. Nelson,, M.A. O’Keefe,: Atomic resolution of lithium ions in LiCoO2. Nat. Mater. 2(7), 464–467 (2003)
https://doi.org/10.1038/nmat922
3 J.M. Tarascon,, M. Armand,: Issues and challenges facing rechargeable lithium batteries. Nature 414(6861), 359–367 (2001)
https://doi.org/10.1038/35104644
4 M.S. Whittingham,: Lithium batteries and cathode materials. Chem. Rev. 104(10), 4271–4302 (2004)
https://doi.org/10.1021/cr020731c
5 S. Dong,, Y. Wu,, N. Lv,, R. Ren,, L. Huang,: Porous sodium titanate nanofibers for high energy quasi-solid-state sodium-ion hybrid capacitors. Rare Met. 41(7), 2453–2459 (2022)
https://doi.org/10.1007/s12598-022-02002-4
6 H. Kim,, J. Hong,, K. Park,, H. Kim,, S. Kim,, K. Kang,: Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114(23), 11788–11827 (2014)
https://doi.org/10.1021/cr500232y
7 J.O.G. Posada,, A.J.R. Rennie,, S.P. Villar,, V.L. Martins,, J. Marinaccio,, A. Barnes,, C.F. Glover,, D.A. Worsley,, P.J. Hall,: Aqueous batteries as grid scale energy storage solutions. Renewable Sustain. Energy Rev. 68, 1174–1182 (2017)
https://doi.org/10.1016/j.rser.2016.02.024
8 H. Zhang,, X. Liu,, H. Li,, I. Hasa,, S. Passerini,: Challenges and strategies for high-energy aqueous electrolyte rechargeable batteries. Angew. Chem. Int. Ed. 60(2), 598–616 (2021)
https://doi.org/10.1002/anie.202004433
9 Y. Tong,, T. Zhang,, Y. Sun,, X. Wang,, X. Wu,: Co3O4@NiMoO4 composite electrode materials for flexible hybrid capacitors. Front. Optoelectron. 15(1), 25 (2022)
https://doi.org/10.1007/s12200-022-00029-0
10 S. Chen,, M. Zhang,, P. Zou,, B. Sun,, S. Tao,: Historical development and novel concepts on electrolytes for aqueous rechargeable batteries. Energy Environ. Sci. 15(5), 1805–1839 (2022)
https://doi.org/10.1039/D2EE00004K
11 S. Dong,, W. Shin,, H. Jiang,, X. Wu,, Z. Li,, J. Holoubek,, W.F. Stickle,, B. Key,, C. Liu,, J. Lu,, P.A. Greaney,, X. Zhang,, X. Ji,: Ultra-fast NH4+ storage: strong H Bonding between NH4+ and Bi-layered V2O5. Chem. 5(6), 1537–1551 (2019)
https://doi.org/10.1016/j.chempr.2019.03.009
12 S. Dong,, Y. Wang,, C. Chen,, L. Shen,, X. Zhang,: Niobium tungsten oxide in a green water-in-salt electrolyte enables ultrastable aqueous lithium-ion capacitors. Nano-Micro Lett. 12(1), 168 (2020)
https://doi.org/10.1007/s40820-020-00508-z
13 G. Liang,, F. Mo,, Q. Yang,, Z. Huang,, X. Li,, D. Wang,, Z. Liu,, H. Li,, Q. Zhang,, C. Zhi,: Commencing an acidic battery based on a copper anode with ultrafast proton-regulated kinetics and superior dendrite-free property. Adv. Mater. 31(52), 1905873 (2019)
https://doi.org/10.1002/adma.201905873
14 H. Wang,, R. Tan,, Z. Yang,, Y. Feng,, X. Duan,, J. Ma,: Stabilization perspective on metal anodes for aqueous batteries. Adv. Energy Mater. 11(2), 2000962 (2021)
https://doi.org/10.1002/aenm.202000962
15 D. Yang,, Y. Zhou,, H. Geng,, C. Liu,, B. Lu,, X. Rui,, Q. Yan,: Pathways towards high energy aqueous rechargeable batteries. Coord. Chem. Rev. 424, 213521 (2020)
https://doi.org/10.1016/j.ccr.2020.213521
16 T. Famprikis,, P. Canepa,, J.A. Dawson,, M.S. Islam,, C. Masquelier,: Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18(12), 1278–1291 (2019)
https://doi.org/10.1038/s41563-019-0431-3
17 D. Chen,, D. Tao,, X. Ren,, F. Wen,, T. Li,, Z. Chen,, Y. Cao,, F. Xu,: A molybdenum polysulfide in-situ generated from ammonium tetrathiomolybdate for high-capacity and high-power rechargeable magnesium battery cathodes. ACS Nano 16(12), 20510–20520 (2022)
https://doi.org/10.1021/acsnano.2c06915
18 Y. Liu,, Z. Qin,, X. Yang,, J. Liu,, X.-X. Liu,, X. Sun,: High-volt-age manganese oxide cathode with two-electron transfer enabled by a phosphate proton reservoir for aqueous zinc batteries. ACS Energy Lett. 7(5), 1814–1819 (2022)
https://doi.org/10.1021/acsenergylett.2c00777
19 X. Qin,, X. Zhao,, G. Zhang,, Z. Wei,, L. Li,, X. Wang,, C. Zhi,, H. Li,, C. Han,, B. Li,: Highly reversible intercalation of calcium ions in layered vanadium compounds enabled by acetonitrile–water hybrid electrolyte. ACS Nano 17(13), 12040–12051 (2023)
https://doi.org/10.1021/acsnano.2c07061
20 J. Yang,, W. Gong,, F. Geng,: Defect modulation in cobalt manganese oxide sheets for stable and high-energy aqueous aluminumion batteries. Adv. Funct. Mater. 33(27), 2301202 (2023)
https://doi.org/10.1002/adfm.202301202
21 Z. Peng,, Y. Li,, P. Ruan,, Z. He,, L. Dai,, S. Liu,, L. Wang,, S. Chan Jun,, B. Lu,, J. Zhou,: Metal-organic frameworks and beyond: the road toward zinc-based batteries. Coord. Chem. Rev. 488, 215190 (2023)
https://doi.org/10.1016/j.ccr.2023.215190
22 R. Yi,, X. Shi,, Y. Tang,, Y. Yang,, P. Zhou,, B. Lu,, J. Zhou,: Carboxymethyl chitosan-modified zinc anode for high-performance zinc–iodine battery with narrow operating voltage. Small Struct. 4(9), 2300020 (2023)
https://doi.org/10.1002/sstr.202300020
23 X. Xie,, J. Li,, Z. Xing,, B. Lu,, S. Liang,, J. Zhou,: Biocompatible zinc battery with programmable electro-cross-linked electrolyte. Natl. Sci. Rev. 10(3), nwac281 (2023)
https://doi.org/10.1093/nsr/nwac281
24 C. You,, X. Wu,, X. Yuan,, Y. Chen,, L. Liu,, Y. Zhu,, L. Fu,, Y. Wu,, Y.-G. Guo,, T. van Ree,: Advances in rechargeable Mg batteries. J. Mater. Chem. A. 8(48), 25601–25625 (2020)
https://doi.org/10.1039/D0TA09330K
25 J. Zhang,, Z. Chang,, Z. Zhang,, A. Du,, S. Dong,, Z. Li,, G. Li,, G. Cui,: Current design strategies for rechargeable magnesium-based batteries. ACS Nano 15(10), 15594–15624 (2021)
https://doi.org/10.1021/acsnano.1c06530
26 C. Pei,, F. Xiong,, Y. Yin,, Z. Liu,, H. Tang,, R. Sun,, Q. An,, L. Mai,: Recent progress and challenges in the optimization of electrode materials for rechargeable magnesium batteries. Small 17(3), 2004108 (2021)
https://doi.org/10.1002/smll.202004108
27 J. Song,, M. Noked,, E. Gillette,, J. Duay,, G. Rubloff,, S.B. Lee,: Activation of a MnO2 cathode by water-stimulated Mg2+ insertion for a magnesium ion battery. Phys. Chem. Chem. Phys. 17(7), 5256–5264 (2015)
https://doi.org/10.1039/C4CP05591H
28 K.W. Nam,, S. Kim,, S. Lee,, M. Salama,, I. Shterenberg,, Y. Gofer,, J.S. Kim,, E. Yang,, C.S. Park,, J.S. Kim,, S.S. Lee,, W.S. Chang,, S.G. Doo,, Y.N. Jo,, Y. Jung,, D. Aurbach,, J.W. Choi,: The high performance of crystal water containing manganese birnessite cathodes for magnesium batteries. Nano Lett. 15(6), 4071–4079 (2015)
https://doi.org/10.1021/acs.nanolett.5b01109
29 P. Saha,, P.H. Jampani,, M.K. Datta,, D. Hong,, B. Gattu,, P. Patel,, K.S. Kadakia,, A. Manivannan,, P.N. Kumta,: A rapid solid-state synthesis of electrochemically active Chevrel phases (Mo6T8; T = S, Se) for rechargeable magnesium batteries. Nano Res. 10(12), 4415–4435 (2017)
https://doi.org/10.1007/s12274-017-1695-z
30 P. Canepa,, G. Sai Gautam,, D.C. Hannah,, R. Malik,, M. Liu,, K.G. Gallagher,, K.A. Persson,, G. Ceder,: Odyssey of multivalent cathode materials: open questions and future challenges. Chem. Rev. 117(5), 4287–4341 (2017)
https://doi.org/10.1021/acs.chemrev.6b00614
31 J.L. Andrews,, A. Mukherjee,, H.D. Yoo,, A. Parija,, P.M. Marley,, S. Fakra,, D. Prendergast,, J. Cabana,, R.F. Klie,, S. Banerjee,: Reversible Mg-ion insertion in a metastable one-dimensional polymorph of V2O5. Chem. 4(3), 564–585 (2018)
https://doi.org/10.1016/j.chempr.2017.12.018
32 V. Augustyn,, P. Simon,, B. Dunn,: Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7(5), 1597–1614 (2014)
https://doi.org/10.1039/c3ee44164d
33 R. Zhang,, X. Yu,, K.-W. Nam,, C. Ling,, T.S. Arthur,, W. Song,, A.M. Knapp,, S.N. Ehrlich,, X.-Q. Yang,, M. Matsui,: α-MnO2 as a cathode material for rechargeable Mg batteries. Electrochem. Commun. 23, 110–113 (2012)
https://doi.org/10.1016/j.elecom.2012.07.021
34 J.-S. Kim,, W. Chang,, R. Kim,, D. Kim,, D. Han,, K. Lee,, S. Lee,, S. Doo,: High-capacity nanostructured manganese dioxide cathode for rechargeable magnesium ion batteries. J. Power. Sources 273, 210–215 (2015)
https://doi.org/10.1016/j.jpowsour.2014.07.162
35 W. Chen,, X. Zhan,, B. Luo,, Z. Ou,, P. Shih,, L. Yao,, S. Pidaparthy,, A. Patra,, H. An,, P.V. Braun,, R.M. Stephens,, H. Yang,, J. Zuo,, Q. Chen,: Effects of particle size on Mg2+ ion intercalation into λ-MnO2 cathode materials. Nano Lett. 19(7), 4712–4720 (2019)
https://doi.org/10.1021/acs.nanolett.9b01780
36 C. Zhang,, X. Zhan,, T. Al-Zoubi,, Y. Ma,, P. Shih,, F. Wang,, W. Chen,, S. Pidaparthy,, R.M. Stephens,, Q. Chen,, J. Zuo,, H. Yang,: Electrochemical generation of birnessite MnO2 nanoflowers for intercalation of Mg2+ ions. Nano Energy 102, 107696 (2022)
https://doi.org/10.1016/j.nanoen.2022.107696
37 M. Clites,, E. Pomerantseva,: Bilayered vanadium oxides by chemical pre-intercalation of alkali and alkali-earth ions as battery electrodes. Energy Storage Mater. 11, 30–37 (2018)
https://doi.org/10.1016/j.ensm.2017.09.005
38 H. Tang,, F. Xiong,, Y. Jiang,, C. Pei,, S. Tan,, W. Yang,, M. Li,, Q. An,, L. Mai,: Alkali ions pre-intercalated layered vanadium oxide nanowires for stable magnesium ions storage. Nano Energy 58, 347–354 (2019)
https://doi.org/10.1016/j.nanoen.2019.01.053
39 S. Rasul,, S. Suzuki,, S. Yamaguchi,, M. Miyayama,: High capacity positive electrodes for secondary Mg-ion batteries. Electrochim. Acta 82, 243–249 (2012)
https://doi.org/10.1016/j.electacta.2012.03.095
40 V. Augustyn,, J. Come,, M.A. Lowe,, J.W. Kim,, P. Taberna,, S.H. Tolbert,, H.D. Abruña,, P. Simon,, B. Dunn,: High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12(6), 518–522 (2013)
https://doi.org/10.1038/nmat3601
41 C. Choi,, D.S. Ashby,, D.M. Butts,, R.H. DeBlock,, Q. Wei,, J. Lau,, B. Dunn,: Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 5(1), 5–19 (2020)
https://doi.org/10.1038/s41578-019-0142-z
42 T. Koketsu,, J. Ma,, B.J. Morgan,, M. Body,, C. Legein,, W. Dachraoui,, M. Giannini,, A. Demortière,, M. Salanne,, F. Dardoize,, H. Groult,, O.J. Borkiewicz,, K.W. Chapman,, P. Strasser,, D. Dambournet,: Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2. Nat. Mater. 16(11), 1142–1148 (2017)
https://doi.org/10.1038/nmat4976
43 D. Wu,, Y. Zhuang,, F. Wang,, Y. Yang,, J. Zeng,, J. Zhao,: High-rate performance magnesium batteries achieved by direct growth of honeycomb-like V2O5 electrodes with rich oxygen vacancies. Nano Res. 16(4), 4880–4887 (2023)
https://doi.org/10.1007/s12274-021-3679-2
44 C. Yuan,, Y. Zhang,, Y. Pan,, X. Liu,, G. Wang,, D. Cao,: Investigation of the intercalation of polyvalent cations (Mg2+, Zn2+) into λ-MnO2 for rechargeable aqueous battery. Electrochim. Acta 116, 404–412 (2014)
https://doi.org/10.1016/j.electacta.2013.11.090
45 M. Liu,, Z. Rong,, R. Malik,, P. Canepa,, A. Jain,, G. Ceder,, K.A. Persson,: Spinel compounds as multivalent battery cathodes: a systematic evaluation based on ab initio calculations. Energy Environ. Sci. 8(3), 964–974 (2015)
https://doi.org/10.1039/C4EE03389B
46 C. Wu,, S. Gu,, Q. Zhang,, Y. Bai,, M. Li,, Y. Yuan,, H. Wang,, X. Liu,, Y. Yuan,, N. Zhu,, F. Wu,, H. Li,, L. Gu,, J. Lu,: Electrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery. Nat. Commun. 10(1), 73 (2019)
https://doi.org/10.1038/s41467-018-07980-7
47 S. Gu,, H. Wang,, C. Wu,, Y. Bai,, H. Li,, F. Wu,: Confirming reversible Al3+ storage mechanism through intercalation of Al3+ into V2O5 nanowires in a rechargeable aluminum battery. Energy Storage Mater. 6, 9–17 (2017)
https://doi.org/10.1016/j.ensm.2016.09.001
48 H. Yang,, H. Li,, J. Li,, Z. Sun,, K. He,, H.-M. Cheng,, F. Li,: The rechargeable aluminum battery: opportunities and challenges. Angew. Chem. Int. Ed. 58(35), 11978–11996 (2019)
https://doi.org/10.1002/anie.201814031
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed