Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2008, Vol. 2 Issue (2) : 156-161    https://doi.org/10.1007/s11706-008-0026-4
Characterization of organic matrix components of pearl oyster, and their implications in shell formation
SAMATA Tetsuro, NOGAWA Chihiro, OBARA Mami, OZAWA Megumi, SATO Aya, WATANABE Akiko, YAMAZAKI Ryo, YAMADA Daishi, AKINIWA Kana
Laboratory for Cell Biology, Department of Environmental Health, Azabu University, 1-17-71 Fuchinobe;
 Download: PDF(449 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Mollusks make their shells by biomineralization using Ca2+ and CO32- from natural environment. In molluscan shells, two types of CaCO3 crystal which are aragonite and calcite form the species-dependent microstructures. It is believed that shell organic matrices act for control of the crystal types and microstructures. Shell of Pinctada fucata is divided into aragonitic nacreous layer and calcitic prismtic layer. In the recent years, several novel matrix components have been identified in pearl oyster shells by subsequent solubilization of the insoluble matrix, even in the nacreous layer which abounds in the data. In them, we focused our attention on a component, of which the N-terminal amino acid sequence was determined, and attempted cloning genes encoding it. As a result, several clones with typical sequence for the ORF (open reading frame) region were identified and the amino acid sequences were deduced. Further analysis of northern hybridization clarified the tissue specific expressions of the transcripts of the identified genes.
Issue Date: 05 June 2008
 Cite this article:   
NOGAWA Chihiro,SAMATA Tetsuro,YAMAZAKI Ryo, et al. Characterization of organic matrix components of pearl oyster, and their implications in shell formation[J]. Front. Mater. Sci., 2008, 2(2): 156-161.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-008-0026-4
https://academic.hep.com.cn/foms/EN/Y2008/V2/I2/156
1 Watabe N Wilber K M Influence of the organic matrixon crystal type in mollusksNature 1960 188(4747)334.
doi: 10.1038/188334a0
2 Lowenstam H A Mineralsformed by organismsScience 1981 211(4487)1126.
doi: 10.1126/science.7008198
3 Weiner S Organizationof organic matrix components in mineralized tissuesIntegrative & Comparative Biology 1984 24(4)945.
doi: 10.1093/icb/24.4.945
4 Miyamoto H Miyashita T Okushima M et al.A carbonic anhydrase from the nacreous layer inoyster pearlsProceedings of the NationalAcademy of Sciences of the United States of America 1996 93(18)9657.
doi: 10.1073/pnas.93.18.9657
5 Samata T Hayashi N Kono M et al.A new matrix protein family related to the nacreouslayer formation of Pinctada fucataFEBS Letters 1999 462(1)225229.
doi:10.1016/S0014‐5793(99)01387‐3
6 Sudo S Fujikawa T Nagakura T et al.Structures of mollusc shell framework proteinsNature 1997 387(6642)563564.
doi:10.1038/42391
7 Suzuki M Murayama E Inoue H et al.Characterization of prismalin-14, a novel matrixprotein from the prismatic layer of the Japanese pearl oyster (Pinctada fucata)The Biochemical Journal 2004 382(1)205213.
doi:10.1042/BJ20040319
8 Tsukamoto D Sarashina I Endo K Structure and expression of an unusually acidic matrixprotein of pearl oyster shellsBiochemicaland Biophysical Research Communications 2004 320(4)11751180.
doi:10.1016/j.bbrc.2004.06.072
9 Gotliv B Kessler N Sumerel J L et al.Asprich: a novel aspartic acid-rich protein familyfrom the prismatic shell matrix of the bivalve Atrina rigidaChemBioChem 2005 6(2)304314.
doi:10.1002/cbic.200400221
10 Sarashina I Endo K Complete primary structureof the molluscan shell protein 1 (MSP-1) of the scallop Patinopecten yessoensisMarine Biotechnology 2001 3(4)362369.
doi:10.1007/s10126‐001‐0013‐6
11 Yano M Nagai K Morimoto K et al.Shematrin: A family of glycine-rich structural proteinsin the shell of the pearl oyster PinctadafucataComparative of Biochemistryand Physiology Part B 2006 144(2)254262.
doi:10.1016/j.cbpb.2006.03.004
12 Katoh-Fukui Y Noce T Ueda T et al.The corrected structure of the SM50 spicule matrixprotein of Strongylocentrotus purpuratusDevelopmental Biology 1991 145(1)201202.
doi:10.1016/0012‐1606(91)90226‐S
13 Katoh-Fukui Y Noce T Ueda T et al.Isolation and characterization of cDNA encodinga spicule matrix protein in Hemicentrotuspulcherrimus micromeresThe InternationalJournal of Developmental Biology 1992 36(3)353361
14 Brandhorst B P Davenport R Skeletogenesis in sea urchininterordinal hybrid embryosCell and TissueResearch 2001 305(1)159167.
doi:10.1007/s004410100381
15 Peled-Kamar M Hamilton P Wilt F H Spicule matrix protein LSM34 is essential for biomineralizationof the sea urchin spiculeExperimental CellResearch 2002 272(1)5661.
doi:10.1006/excr.2001.5398
16 Harkey M A Klueg K Sheppard P et al.Structure, expression, and extracellular targetingof PM27, a skeletal protein associated specifically with growth ofthe sea urchin larval spiculeDevelopmentalBiology 1995 168(2)549566.
doi:10.1006/dbio.1995.1101
17 Raman V Andrews M E Harkey M A et al.Protein-DNA interactions at putative regulatoryregions of two coordinately expressed genes, msp130 and PM27, duringskeletogenesis in sea urchin embryosTheInternational Journal of Developmental Biology 1993 37(4)499507
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed