Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front Mater Sci Chin    2009, Vol. 3 Issue (2) : 205-211    https://doi.org/10.1007/s11706-009-0022-3
RESEARCH ARTICLE
On the properties of <111>{110} dissociated superdislocation in B2 structure YAg and YCu: Core structure and Peierls stress
Xiao-zhi WU(), Shao-feng WANG
Institute for Structure and Function, Chongqing University, Chongqing 400044, China
 Download: PDF(192 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The simplified one-dimensional dislocation equation for mixed dislocations is derived briefly from the two-dimensional modified Peierls-Nabarro equation taking into account the discreteness effect of crystals. The collinear dissociated core structure of <111>{110} superdislocations in the novel B2 structure YAg and YCu are investigated with the simplified equation. Both the core width and the dissociated width are increasing with the increases in the dislocation angle of superdislocations. The dissociated width determined by continuum elastic theory is inaccurate for the high antiphase boundary energy but is recovered for the low antiphase boundary energy. The Peierls stress of the dissociated dislocation is replaced by that of superpartials. The results show that both the unstable stacking fault energy and the core width are crucial for the Peierls stress in the case of a narrow core structure. However, the core width becomes the main factor in controlling the Peierls stress in the case of a wide core.

Keywords core structure      dissociation width      variational method      Peierls stress     
Corresponding Author(s): WU Xiao-zhi,Email:xiaozhi3270@sina.com.cn   
Issue Date: 05 June 2009
 Cite this article:   
Xiao-zhi WU,Shao-feng WANG. On the properties of <111>{110} dissociated superdislocation in B2 structure YAg and YCu: Core structure and Peierls stress[J]. Front Mater Sci Chin, 2009, 3(2): 205-211.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-009-0022-3
https://academic.hep.com.cn/foms/EN/Y2009/V3/I2/205
μνaγAPBγusΔ
YAg3.300.323.619745834-0.66
YCu3.250.2993.47710301065-0.60
Tab.1  Shear modulus , Poisson’s ratio , lattice parameters , antiphase boundary energy , and Δ of YAg and YCu
Fig.1  Generalized stacking fault energy curves along the <111> direction in the {110} slip plane of YAg and YCu; The corresponding restoring force of YAg and YCu
30°60°90°
YAgdeq0.951.121.441.58
?p0.280.340.440.49
σP6.985.452.721.80
YCudeq0.790.941.181.28
?p0.280.340.420.46
σP9.427.364.303.13
Tab.2  Core width , dissociated width (in units of ), and Peierls stress (in units of 10) at 0° (screw), 30°, 60°, and 90° (edge) superdislocations in YAg and YCu
Fig.2  The dislocation profile of the edge superdislocation in YAg obtained by the P-N equation and modified P-N equation; The corresponding dislocation density of the edge superdislocation
Fig.3  The dissociated width as a function of the antiphase boundary energy for the edge dissociated superdislocation in YAg
Fig.4  The changes in Peierls stress as a function of the core width for different antiphase boundary energy (taking YAg as an example)
1 Medvedeva N I, Mryasov O N, Gornostyrev Y N, . First-principles total-energy calculations for planar shear and cleavage decohesion processes in B2-ordered NiAl and FeAl. Physical Review B , 1996, 54: 13506–13514
doi: 10.1103/PhysRevB.54.13506
2 Schoeck G. The core structure of dissociated dislocations in NiAl. Acta Materialia , 2001, 49: 1179–1187
doi: 10.1016/S1359-6454(01)00030-1
3 Gschneidner K A, Russell A M, Pecharsky A, . A family of ductile intermetallic compounds. Nature Materials , 2003, 2: 587–591
doi: 10.1038/nmat958
4 Morris J R, Ye Y Y, Lee Y B, . Ab initio calculation of bulk and defect properties of ductile rare-earth intermetallic compounds. Acta Materialia , 2004, 52: 4849–4857
doi: 10.1016/j.actamat.2004.06.050
5 Xie S, Russell A M, Becker A T, . Dislocation core structures in YAg, a ductile B2 CsCl-type intermetallic compound. Scripta Materialia , 2008, 58: 1066–1069
doi: 10.1016/j.scriptamat.2008.01.055
6 Shi Y J, Du Y L, Chen G, . First principle study on phase stability and electronic structure of YCu. Physics Letter A , 2007, 368: 495–498
doi: 10.1016/j.physleta.2007.04.047
7 Tao X M, Ouyang Y F, Liu H S, . Ab initio calculations of mechanical and thermodynamic properties for the B2-based AlRE. Computational Materials Science , 2007, 40(2): 226–233
doi: 10.1016/j.commatsci.2006.12.001
8 Zhang Z, Russell A M, Biner S B, . Fracture toughness of polycrystalline YCu, DyCu and YAg. Intermetallics , 2005, 13: 559–564
doi: 10.1016/j.intermet.2004.09.008
9 Wu X Z, Wang S F, Liu R P. On the core structure and mobility of &lt;100&gt;{010} and &lt;100&gt;{011 ˉ} dislocations in B2 structure YAg and YCu (submitted)
10 Wang S F. Lattice theory for structure of dislocations in a two-dimensional triangular crystal. Physical Review B , 2002, 65: 094111
doi: 10.1103/PhysRevB.65.094111
11 Wang S F. A unified dislocation equation from lattice statistics. Journal of Physics A: Mathematical and Theoretical , 2009, 42: 025208
doi: 10.1088/1751-8113/42/2/025208
12 Wu X Z, Wang S F. The extended core structure of dissociated edge dislocations in fcc crystals with the consideration of discreteness. Acta Mechanica Solida Sinica , 2008, 21: 403–410
13 Mryasov O N, Gornostyrev Y N, Schilfgaarde M, . Superdislocation core structure in L12 Ni3Al, Ni3Ge and Fe3Ge: Peierls-Nabarro analysis starting from ab-initio GSF energetics calculations. Acta Materialia , 2002, 50(18): 4545–4554
doi: 10.1016/S1359-6454(02)00282-3
14 Zhang Y, Yao Y. The two-dimensional Peierls-Nabarro model for interfacial misfit dislocation network of cubic lattice. The European Physical Journal B , 2007, 55: 355–362
doi: 10.1140/epjb/e2007-00072-0
15 Joós B, Ren Q, Duesbery M S. Peierls-Nabarro model of dislocations in silicon with generalized stacking-fault restoring forces. Physical Review B , 1994, 50(9): 5890–5898
doi: 10.1103/PhysRevB.50.5890
16 Lej?ek L. Dissociated dislocations in the Peierls-Nabarro model. Czechoslovak Journal Physics B , 1976, 26: 294–299
doi: 10.1007/BF01594267
17 Wang S F, Wu X Z, Wang Y F. Variational principle for the dislocation equation in lattice theory. Physica Scripta , 2007, 76: 593–596
doi: 10.1088/0031-8949/76/5/029
18 Hirth J P, Lothe J. Theory of Dislocations. New York: John Wiley, 2nd ed., 1982
19 Nabarro F R N. Fifty-year study of the Peierls-Nabarro stress. Materials Science and Engineering: A , 1997, 234–236: 67–76
doi: 10.1016/S0921-5093(97)00184-6
20 Wang J N. Prediction of Peierls stress for different crystal. Materials Science and Engineering: A , 1996, 206: 259–269
doi: 10.1016/0921-5093(95)09982-4
21 Ogata S, Li J, Yip S. Ideal pure shear strength of aluminum and copper. Science , 2002, 298: 807–811
doi: 10.1126/science.1076652
22 Wang S F. Dislocation energy and Peierls stress: a rigorous calculation from the lattice theory. Chinese Physics , 2007, 15(6): 1301–1309
23 Wu X Z, Wang S F. Application of parametric derivation method to the calculation of Peierls energy and Peierls stress in lattice. Acta Mechanica Solida Sinica , 2007, 20(4): 363–368
24 Joós B, Duesbery M S. The Peierls stress of dislocations: an analytic formula. Physical Review Letters , 1997, 78: 266–269
doi: 10.1103/PhysRevLett.78.266
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed